При заполнении матриц парных сравнений эксперт отвечает на следующие вопросы: Какой из двух сравниваемых объектов предпочтительнее? По какому функциональному закону идет изменение предпочтительности во времени одного сравниваемого объекта (критерия или альтернативы) над другими? Каковы параметры выбранной функции?
Например, при попарном сравнении альтернатив А1 — валюта и А2 — драгоценные металлы экспертом отдается предпочтение второй, причем прогноз изменения предпочтения описывается экспоненциальной функцией y21= 0,01е1.1t+2 (см. табл. 2.6). Параметры функции выбираются с учетом настройки на дискретную девятибалльную шкалу, которая применяется для измерения предпочтений. При этом отсутствию предпочтения соответствует 1, а абсолютному предпочтению — 9.
Таблица 2.6
Динамические предпочтения альтернатив относительно критериев качества
На рис. 2.12 приведен график зависимости y21(t), который показывает, что в начальный момент времени драгоценные металлы предпочтительнее валюты с оценкой 2, затем предпочтительность возрастает с течением времени по экспоненциальному закону: сначала медленно, потом быстро. В конце периода прогнозирования оценка предпочтения близка к 9. Решение задачи численными методами позволяет получить функциональные зависимости векторов приоритетов альтернатив от времени W(t) по всем критериям (табл. 2.7), входящим в иерархию (см. рис. 2.11).
Таблица 2.7
Зависимость вектора приоритетов от времени
Графики (рис. 2.13) иллюстрируют функциональные зависимости значений векторов приоритетов рассматриваемых трех альтернатив от времени по критериям "физический износ" и "место хранения". Анализ этих графиков показывает, что по критерию "физический износ" лучшей является альтернатива А2 — драгоценные металлы со значениями, изменяющимися по экспоненциальному закону. С другой стороны, по критерию "место хранения" наиболее предпочтительна валюта со значениями в векторе приоритетов, изменяющимися во времени по логарифмическому закону.
В результате свертки векторов приоритетов альтернатив по всем критериям, входящим в иерархию, получены функциональные зависимости значений результирующего вектора приоритетов альтернатив W(t) (рис. 2.14) по интегральному критерию "наилучшее обеспечение банковского кредита".
Анализ приведенных графиков показывает, что наиболее предпочтительными являются драгоценные металлы, приоритет которых со временем возрастает по сравнению с валютой.
Экранная форма с ЭВМ, иллюстрирующая этап работы системы поддержки динамических процессов принятия решений при формировании предпочтений, приведена на рис. 2.15.
2.7.2. Функционально-стоимостный анализ промышленной продукции
Функционально-стоимостный анализ (ФСА) — метод комплексного исследования функций объектов — предназначен для обеспечения общественно необходимых потребительских свойств объектов и минимальных затрат на их проявление на всех этапах их жизненного цикла [4 — 7].
Объектами ФСА могут быть изделие, технологический процесс, производственные, организационные, управленческие системы и их отдельные элементы. В методе ФСА анализу подвергаются функции и стоимости функций. Из-за несовершенства объектов, технологических процессов, применяемых материалов затраты могут оказаться излишними. Поэтому цель ФСА — обнаружение, предупреждение, сокращение или ликвидация излишних затрат. Эта цель может быть достигнута путем:
• сокращения затрат при одновременном повышении потребительских свойств объекта;
• повышения качества при сохранении уровня затрат;
• сокращения затрат при обоснованном снижении технических параметров до их функционально необходимого уровня;
• повышения качества при некотором, экономически оправданном увеличении затрат.
Для анализа затрат функций разработаны следующие методы [2, 3]:
1) метод подбора и ориентировочной оценки простейших решений по каждой функции в отдельности;
2) метод ранжирования функций по величине затрат, связанных с выполнением этих функций;
3) метод установления пропорций между затратами на осуществление основных и вспомогательных функций;
4) метод сопоставления затрат на функции с балльными оценками значимости функций;
5) метод исследования факторов снижения затрат на функции.
Для перечисленных выше четвертого и пятого методов на основе МАИ разработаны их модификации. Рассмотрим сущность этих модифицированных методов.
Метод сопоставления затрат на функции с балльными оценками значимости функций. Он исходит из предположения о том, что нормирующим условием для распределения затрат служит значимость функций. Значимость функций некоторого уровня иерархии функциональной модели определяет их вклад в реализацию функции вышестоящего иерархического уровня, которой они подчинены. Для оценки значимости (Нi) i-й функции в методе ФСА предполагается использовать один из ведущих критериев качества функции, которой он подчинен. Такими критериями являются надежность, точность, быстродействие и т.д. Относительные производственные затраты Zi на осуществление i-й функции также выражаются в баллах следующим образом:
Zi=Ci× 100/Собщ, (2.10)
где Сi — затраты на осуществление 1-й функции в рублях;
Сoбщ — общая стоимость изготовления всего объекта в рублях.
Далее балльные оценки Нi и Zi сопоставляются с помощью диаграммы "значимость — затраты" и рассчитываются значения удельных относительных затрат на один балл значимости:
zi=Zi/Hi, (2.11)
Неблагополучным соотношением "значимость — затраты" считаются те, у которых Zi больше единицы.
Основной недостаток этого метода — большая неопределенность, вкладываемая в определение критерия значимости функции. Поэтому предлагается использовать иерархическое представление значимости функций.
Значимость функций может быть рассчитана по одному ведущему критерию или по комплексу наиболее важных критериев качества, характеризующих главную внешнюю функцию системы в целом. Для первого случае иерархическая система имеет вид, приведенный на рис. 2.16а.
Во втором случае подбирается такой набор наиболее важных критериев качества, с помощью которых может быть оценена как главная внешняя функция, так и функции отдельных элементов, обеспечивающие выполнение первой. Общая схема ранжирования альтернатив-функций (Fi) по значимости с учетом множества критериев качества (Ki) приведена на рис. 2.16б.
Рассмотрим пример сопоставления значимости функций и затрат на их осуществление для виброзащитной системы с использованием традиционного и предлагаемого подходов. Виброзащитная система имеет главную функцию, характеризующую систему в целом, и четыре подфункции, определяющие назначение четырех конструктивных элементов, из которых состоит система.
Все подфункции подчинены главной функции — защите от вибраций человека-оператора. Ведущим критерием качества главной функции является качество виброзащитных свойств рассматриваемой технической системы. В результате экспертной оценки относительной значимости функции по критерию "качество виброзащитных свойств" получены следующие данные: H1 = 40; Н2 = 30; Н3 = 25, Н4 = 5 баллов (сумма баллов по всем функциям должна равняться 100). Относительные производственные затраты на осуществление i-й функции, выраженные в баллах, имеют следующие значения Z1 = 30; Z2 = 50; Z3 = 5; Z4 = 15. Диаграмма "значимость — затраты" для рассматриваемой системы виброзащиты приведена на рис. 2.17а. Удельные относительные затраты на один балл следующие: z1 = 0,75; z2 = 1,66; z3 = 0,20; z4 = 3,0. Анализ диаграммы "значимость — затраты" и удельных затрат указывает на целесообразность совершенствования системы по функции F4, поскольку для нее удельные затраты значительно превосходят единицу.
Теперь рассмотрим решение этой задачи с использованием метода анализа иерархий (рис. 2. 17б). Значимость функций будем определять по следующим критериям качества K1 — эффективность; К2 — надежность; К3 — долговечность. Функции оценивались методом попарного сравнения по каждому критерию качества Ki. В результате иерархического синтеза был получен интегральный вектор приоритетов функций, который установил для них следующую значимость: Н1 = 56, H2 = 10, H3 = 30, H4 = 4. Относительные производственные затраты на осуществление функций оставлены прежними и определены для i-й функции с учетом (2.10) и (2.11).