Смекни!
smekni.com

Анализ, синтез, планирование решений в экономике (стр. 30 из 65)

4.7. Ранжирование альтернатив на множестве лингвистических векторных оценок

Задано множество альтернатив A == {а1, а2, ..., аm} и множество соответствующих исходов S = [s1, s2, ..., sm,}. Каждый исход sj характеризуется альтернативой аi и вектором лингвистических оценок на множестве критериев К = 1, К2, .... Кn}. Множество лингвистических векторных оценок исходов К = {K(s1), K(s2), ..., K(sm)} можно упорядочить, введя функцию принадлежности не­четкого отношения порядка m ³: К ´ К ® [0,1]. Для i-го критерия обозначим mi³(Ki(sj), Ki(sk)) через mi³ (sj , sk) Значение этой функции можно вычислить по фоомуле

Степень истинности m < (sj, sk) нечеткого высказывания sj < sk можно определить как вероятность того, что точное значение sj будет меньше точного значения sk. Предполагая, что исходы явля­ются независимыми случайными величинами, отношение m < (sj, sk) можно представить в виде:

где vs(x) — вероятность того, что в качестве точного значения нечеткого числа s используется величина х;

ws(x) — вероятность того, что в качестве точного значения s используется величина у < х:

Векторные оценки могут быть упорядочены на основе функ­ции принадлежности

где х — обозначает символ обобщенной операции.

Так как между множеством альтернатив и исходив существует взаимно однозначное соответствие, функцию принадлежности не­четкого отношения предпочтения на множестве альтернатив мож­но представить в виде:

Решение задачи с использованием данного метода включает следующие основные шаги:

• вычисление функций принадлежности m< с использованием соотношений (4.2);

• построение нечеткого отношения порядка m³;

• минимизация отношения m³;

• определение отношений предпочтения на множестве альтерна­тив и выявление лучшей альтернативы. Для этого вычисляется от­ношение предпочтения между альтернативой aj и всеми остальны­ми альтернативами, функция принадлежности которого имеет вид:

где Ij множество индексов альтернатив, с которыми может сравниваться j-я альтернатива.

Решение задачи ранжирования можно описать соотношениями:

где rj ранг альтернативы.

Наиболее предпочтительная альтернатива имеет самый низкий ранг.

4.8. Методика решения прикладных задач на ЭВМ

4.8.1. Многокритериальный выбор методом максимннной свертки в сфере банковского кредитования

Банковское кредитование

С развитием рыночных отношений процесс кредитования бан­ками предприятий сопряжен с многочисленными факторами рис­ка, способными повлечь за собой непогашение ссуды в установ­ленный срок. При анализе кредитоспособности заемщика опреде­ляется возможность своевременного и полного погашения за­долженности по ссуде; степень риска, которую банк готов взять на себя; размер кредита, который может быть предоставлен в конкретной ситуации; условия предоставления кредита.

В современных условиях анализ кредитоспособности связан не только с оценкой платежеспособности клиента на определенную дату, но и с выявлением наиболее предпочтительных заемщиков, прогнозированием их финансовой устойчивости в перспективе, учетом возможных рисков по кредитным операциям. Проведение такого всестороннего анализа позволяет банку более эффективно управлять кредитными ресурсами и получать прибыль.

Применяемые банками методы в области кредитования осно­ваны на данных бухгалтерских отчетов, поэтому они позволяют лишь оценить кредитоспособность ссудозаемщика, не обеспечивая выбора наиболее оптимального заемщика в целях минимиза­ции факторов риска для банка и наиболее эффективного планиро­вания своей деятельности в будущем.

Рассмотрим применение метода принятия решений, основан­ного на теории нечетких множеств в области кредитования, по­зволяющего повысить обоснованность принимаемых решений и обеспечить выбор наиболее рационального варианта из множества допустимых.

К региональному отделению сберегательного банка России обратились четыре предприятия с просьбой о предоставлении им кредита. Поскольку ресурсы банка ограничены, перед ним стоит задача выбрать одно предприятие, лучшее по комплексу критери­ев качества. В рассматриваемой задаче предприятия являются аль­тернативами, из которых предстоит сделать выбор лучшей. Аль­тернативы обозначим через а1, ...,a4.

Для оценки кредитоспособности предприятий-заемщиков ис­пользуем данные их бухгалтерской отчетности (табл. 4.1).

Таблица 4.1

Данные бухгалтерской отчетности

Финансовый показатель

Значение показателя для предприятия, тыс. руб.

a1

a2

a3

a4

Денежные средства (ДС)

229,1

946,2

947,0

1442,9

Краткосрочные финан­совые вложения (КФВ)

394,1

462,7

466,4

2066,0

Дебиторская задолжен­ность (ДЗ)

4639,8

8391,4

8514,5

10908,2

Запасы и затраты (33)

6028,1

21557,6

21370,4

17424,5

Собственный капитал (СК)

12395,8

35247,8

41244,2

53939,4

Краткосрочные обязатель­ства (ОКс)

4058,1

13834,9

16827,1

25028,3

Итог баланса (ИБ)

16453,9

49082,7

58071,3

78967,7

Валовая выручка (ВВ)

59438,9

38567,9

43589,5

28343,6

Прибыль (П)

16642,9

4442,5

65384,2

3401,2

На основании этих данных рассчитываются финансовые коэффициен­ты, характеризующие кредитоспособность заемщиков: коэффици­ент абсолютной ликвидности (F1), промежуточный коэффициент покрытия (F2), общий коэффициент покрытия (F3), коэффициент финансовой независимости (F4) коэффициент рентабельности продукции (F5). Перечисленные коэффициенты являются крите­риями качества кредитоспособности предприятий и рассчитываются по следующим формулам:

Рассчитанные значения критериев качества для рассматривае­мых предприятий приведены в табл. 4.2. Там же даны норматив­ные значения критериев. Анализ расчетных и нормативных значе­ний критериев показывает, что все предприятия могут претендо­вать на получение кредита.

Таблица 4.2

Расчетные и нормативные значения критериев качества предприятий

Критерий качества

Значение критерия для предприятия

Нормативное значение

а1

a2

a3

a4

F1

0,154

0,102

0,084

0,140

0,1-0,25

F2

1,297

0,71

0,59

0,57

0,5-1,0

F3

2,78

2,27

1,86

1.27

1,0-2,5

F4

0,75

0,72

0,71

0,68

0,6

F5

0,28

0,115

0,15

0,12

Чем выше, тем лучше

Обработка полученной исходной информации с применением математического аппарата теории нечетких множеств проводится в три этапа.