Критерии получили следующие лингвистические оценки относительной важности a = {
= ВАЖНЫЙ; = ДОВОЛЬНО ВАЖНЫЙ; = НЕ ОЧЕНЬ ВАЖНЫЙ; = ВАЖНЫЙ; = НЕ ОЧЕНЬ ВАЖНЫЙ; = ДОВОЛЬНО ВАЖНЫЙ; = ВАЖНЫЙ; = НЕ ОЧЕНЬ ВАЖНЫЙ}.Оценка альтернатив по критериям производится с использованием лингвистической переменной S == "УДОВЛЕТВОРИТЕЛЬНОСТЬ" = {КРАЙНЕ НИЗКАЯ; НИЗКАЯ; СРЕДНЯЯ; ВЫСОКАЯ; ОЧЕНЬ ВЫСОКАЯ}. Функции принадлежности термов имеют следующий вид:
КРАЙНЕ НИЗКАЯ = {1,0/0,0; 0,0/0,0};
НИЗКАЯ = {0,0/0,0; 1,0/0,2; 0,0/0,4};
СРЕДНЯЯ = {0,0/0,3; 1,0/0,5; 0,0/0,7};
ВЫСОКАЯ = {0,0/0,6; 1,0/0,8; 0,0/1,0};
ОЧЕНЬ ВЫСОКАЯ = {0,0/0,8; 1,0/1,0};
В табл. 4.8 сведены оценки рассматриваемых альтернатив.
Таблица 4.8
Оценка удовлетворительности альтернатив относительно критериев
Критерий | Оценка альтернативы | |||
а1 | a2 | a3 | a4 | |
c1 | Средняя | Средняя | Низкая | Крайне низкая |
c2 | Высокая | Высокая | Средняя | Низкая |
c3 | Высокая | Высокая | Низкая | Крайне низкая |
c4 | Высокая | Низкая | Низкая | Средняя |
c5 | Низкая | Очень высокая | Высокая | Средняя |
c6 | Средняя | Средняя | Высокая | Высокая |
c7 | Высокая | Низкая | Низкая | Средняя |
c8 | Высокая | Средняя | Средняя | Средняя |
Аддитивная свертка представленной информации дала следующий результат:
mJ(j) = {1,0/a1; 0,75/a2; 0,68/a3; 0,58/а4}.
что позволяет считать лучшей альтернативой стратегию по снижению цены а1.
4.8.5. Выбор предприятия для кредитования методом лингвистических векторных оценок
Решается задача выбора из трех альтернативных предприятий наиболее платежеспособного в целях предоставления кредита. Оценка альтернатив (аi) проводится по следующим критериям: с1 — общая ликвидность; с2 — обеспеченность собственными средствами; с3 — восстанавливаемость платежеспособности.
Сформируем векторный критерий С = {c1, с2, c3}. Оценки возможных исходов по критериям сi представлены нечеткими числами, заданными на базовом множестве Х = {1, 2, 3, ..., 10}. Множество лингвистических оценок TS = {ОН (очень низкий); Н (низкий); С (средний); В (высокий); OВ (очень высокий)}. Функции принадлежности термов имеют вид:
ОН = {1,0/1; 0,8/2; 0,2/3};
Н= {0,8/1; 0,9/2; 0,5/3; 0,2/4};
С = {0,3/3; 0,7/4; 1,0/5; 0,8/6; 0,2/7};
В = {0,2/7; 0,5/8; 0,9/9; 0,8/10};
ОВ = {0,2/8; 0,8/9; 1,0/10}.
Лингвистические векторные оценки альтернатив заданы матрицей:
Суть данной методики заключается в вычислении оценки предпочтительности каждой из альтернатив относительно других. При этом, как и в случае максиминной свертки, сначала вычисляются наихудшие оценки для каждой альтернативы (m<), а после этого обратные им отношения предпочтительности (m³), среди которых выбирается максимальное.
Вычислим степень предпочтительности для альтернативы а1:
Аналогично находятся суммы по критериям c2 и c3. Функция принадлежности m<(a1) вычисляется следующим образом:
Теперь вычислим нечеткое отношение m³(a1):
Степень предпочтительности альтернативы а1 равна минимальному из приведенных значений, т. е, m³(a1) = 0,673. Для альтернативы а2 получены следующие оценки:
Степень предпочтительности m³(a2) = 0,462.
Соответственно для а3.
Степень предпочтительности m³(a3) = 0,709. Лучшей считается альтернатива, имеющая максимальную степень предпочтительности, т. е. a3.
4.8.6. Сравнительный анализ различных методов принятия решений
Теория нечетких множеств, предложенная Л. Заде в 1961 г., к настоящему времени приобрела широкую популярность и получила практическое применение во многих отраслях знаний. В сфере принятия решений на базе этой теории разработан широкий спектр разнообразных методов, только небольшая часть из которых рассмотрена в настоящей книге. Нелегкой проблемой сегодняшнего дня является выбор подходящего метода или программного обеспечения для поддержки процессов принятия решений. Поэтому особую актуальность приобретают проведение сравнительного анализа различных методов и разработка рекомендаций по их применению.
Рассмотрим подходы к решению одной задачи многокритериального выбора в условиях неопределенности с использованием различных методов. При этом будем использовать исходную информацию, полученную от одного и того же высококвалифицированного эксперта. Ранее были рассмотрены задачи в условиях одинаковой и различной важности критериев. Последняя ситуация является более общей, поэтому будем решать задачу в условиях неодинаковой значимости критериев.
Анализ и оценка инвестиционных проектов — одна из самых сложных задач в сфере экономики, производства и управления. Ее сложность обусловлена, с одной стороны, значительной неопределенностью, так как при решении вопроса об инвестициях всегда нужно предвидеть будущее, и с другой стороны — наличием множества заведомо противоречивых критериев. Человеку (ЛПР) свойственно желать получения максимальной прибыли при минимальных затратах, чего, как известно, никому не удавалось достигнуть, поскольку минимальные затраты равны нулю. При решении подобных задач в условиях определенности целевая функция строится на основе независимых, а следовательно, и непротиворечивых критериев. Однако в условиях неопределенности анализ решений производится на основе вербальной экспертной информации, элементы которой могут противоречить друг другу. При этом результаты анализа решений, полученные любыми методами, теряют свою ценность, так как точность и достоверность результата вычислений никогда не могут превзойти точности и достоверности исходных данных.
Итак, инвестор должен осуществить выбор одного из трех проектов: а1 — проект технологического комплекса для термического обезвреживания и переработки отходов; а2 — проект завода по производству аэрозольных огнетушителей третьего поколения; a3 — проект создания инвестиционно-финансовой компании.
Задача анализа проектов может иметь большое количество постановок в зависимости от целей, которые стоят перед инвестором, от объема его финансовых ресурсов, от его склонности к риску, от окружающей обстановки и возможных прогнозов на будущее.
В данном случае главной целью ЛПР является выбор рационального инвестиционного проекта. При этом объем финансовых ресурсов инвестора ограничен, он не склонен к большому риску и имеет не самые худшие виды на будущее. Для выбора сформирован следующий набор критериев: с1 — рентабельность; с2 — оценка возможных рынков сбыта; c3 — первоначальные средства; c4 — производственный риск; с5 — инвестиционный риск. Рациональный выбор связан со стремлением получить решение, характеризующееся приемлемыми оценками по всем критериям, хотя их значимость для ЛПР может быть различной. Примерами альтернативных постановок могут служить задачи выбора проекта с максимальной прибылью или с минимальным риском.