Смекни!
smekni.com

Анализ, синтез, планирование решений в экономике (стр. 4 из 65)

Рассмотрим традиционные классификации:

1. По виду отображения F. Отображение множества А и К может иметь детерминированный характер, вероятностный или неопределенный вид, в соответствии с которым задачи принятия решений можно разделить на задачи в условиях риска и задачи в условиях неопределенности.

2. Мощность множества К. Множество критериев выбора может содержать один элемент или несколько. В соответствии с этим задачи принятия решений можно разделить на задачи со скалярным критерием и задачи с векторным критерием (много­критериальное принятие решений).

3. Тип системы G. Предпочтения могут формироваться одним лицом или коллективом, в зависимости от этого задачи принятия решений можно классифицировать на задачи индивидуального принятия решений и задачи коллективного принятия решений.

Задачи принятия решений в условиях определенности. К этому классу относятся задачи, для решения которых имеется достаточная и достоверная количественная информация. В этом случае с успехом применяются методы математического программирования, суть которых состоит в нахождении оптимальных решений на базе математической модели реального объекта. Основные условия применимости методов математического программирования следующие:

1. Задача должна быть хорошо формализована, т. е. имеется адекватная математическая модель реального объекта.

2. Существует некоторая единственная целевая функция (критерий оптимизации), позволяющая судить о качестве рассматриваемых альтернативных вариантов.

3. Имеется возможность количественной оценки значений це­левой функции.

4. Задача имеет определенные степени свободы (ресурсы опти­мизации), т. е. некоторые параметры функционирования системы, которые можно произвольно изменять в некоторых пределах в целях улучшения значений целевой функции.

Задачи в условиях риска. В тех случаях, когда возможные исходы можно описать с помощью некоторого вероятностного распределения, получаем задачи принятия решений в условиях риска. Для построения распределения вероятностей необходимо либо иметь в распоряжении статистические данные, либо привле­кать знания экспертов. Обычно для решения задач этого типа при­меняются методы теории одномерной или многомерной полезно­сти. Эти задачи занимают место на границе между задачами при­нятия решений в условиях определенности и неопределенности. Для решения этих задач привлекается вся доступная информация (количественная и качественная).

Задачи в условиях неопределенности. Эти задачи имеют ме­сто тогда, когда информация, необходимая для принятия решений, является неточной, неполной, неколичественной, а формальные модели исследуемой системы либо слишком сложны, либо отсут­ствуют. В таких случаях для решения задачи обычно привлекают­ся знания экспертов. В отличие от подхода, принятого в эксперт­ных системах, для решения ЗПР знания экспертов обычно выра­жены в виде некоторых количественных данных, называемых пред­почтениями.

Выбор и нетривиальность задач принятия решений. Сле­дует отметить, что одним из условий существования задачи при­нятия решений является наличие нескольких допустимых альтер­натив, из которых следует выбрать в некотором смысле лучшую. При наличии одной альтернативы, удовлетворяющей фиксирован­ным условиям или ограничениям, задача принятия решений не имеет места.

Задача принятия решений называется тривиальной, если она характеризуется исключительно одним критерием К и всем альтернативам Аi приписаны конкретные числовые оценки в соответствии со значениями указанного критерия (рис. 1.1 а).

Рис. 1.1. Выбор альтернативы при одном критерии:

ав условиях определенности; б — в условиях неопределенности;

в в условиях риска

Задача принятия решений перестает быть тривиальной даже при одном критерии К, если каждой альтернативе Аi соответству­ет не точная оценка, а интервал возможных оценок (рис. 1.1 б) или распределение f(К/Аi) на значениях указанного критерия (рис. 1.1 в).

Нетривиальной считается задача при наличии нескольких кри­териев принятия решений (рис. 1.2) независимо от вида отображе­ния множества альтернатив в множество критериальных оценок их последствий.

Рис. 1.2. Выбор альтернативы с учетом двух критериев: а — в случае непрерывной области альтернатив; б в случае дискретных альтернатив

Следовательно, при наличии ситуации выбора, многокритери-альности и осуществлении выбора в условиях неопределенности или риска задача принятия решений является нетривиальной.

1.4. Классификация методов принятия решений

Существует множество классификаций методов принятия ре­шений, основанных на применении различных признаков [10, 19 — 23]. В табл. 1.1 приведена одна из возможных классификаций, признаками которой являются содержание и тип получаемой экс­пертной информации.

Таблица 1.1

Классификация методов принятия решений

№ п/п

Содержание информации

Тип информации

Метод принятия решений

1

Экспертная информация не требуется

Метод доминирования [24, 25]

Метод на основе глобальных критериев [26, 27]

2

Информация о предпочтениях на множестве критериев

Качественная ин­формация

Количественная оценка предпочти­тельности критери­ев

Количественная информация о за­мещениях

Лексикографическое упо­рядочение [24,25]

Сравнение разностей критериальных оценок [22,24]

Метод припасовывания [24]

Методы "эффективность-стоимость" [24,28]

Методы свертки на иерар­хии критериев [29,30]

Методы порогов [24, 31]

Методы идеальной точки [24]

Метод кривых безразличия [10,24] Методы теории ценности [10, 24]

3

Информация о предпочтительно­сти альтернатив

Оценка предпочти­тельности парных сравнений

Методы математического программирования [32,33]

Линейная и нелинейная свертка при интерактивном способе определения ее параметров [34]

4

Информация о предпочтениях на множестве крите­риев и о послед­ствиях альтернатив

Отсутствие инфор­мации о предпочте­ниях; количествен­ная и/или интер­вальная информа­ция о последствиях. Качественная ин­формация о предпочтениях и коли­чественная о по­следствиях

Качественная (по­рядковая) информа­ция о предпочтени­ях и последствиях

Количественная информация о предпочтениях и последствиях

Методы с дискретизацией неопределенности [8,26]

Стохастическое доминиро­вание [8,10,22]

Методы принятия решений в условиях риска и неопре­деленности на основе гло­бальных критериев [8, 35]

Метод анализа иерархий [36]

Методы теории нечетких множеств [7, 13, 14, 15, 17, 37]

Метод практического при­нятия решений [8, 24]

Методы выбора статисти­чески ненадежных реше­ний [8,38]

Методы кривых безразли­чия для принятия решений в условиях риска и неопре­деленности [8]

Методы деревьев решений [8,37]

Декомпозиционные мето­ды теории ожидаемой по­лезности [8, 10,11]

Используемый принцип классификации позволяет достаточно четко выделить четыре большие группы методов, причем три группы относятся к принятию решений в условиях определенности, а четвертая — к принятию решений в условиях неопределенности. Из множества известных методов и подходов к принятию решений наибольший интерес представля­ют те, которые дают возможность учитывать многокритериальность и неопределенность, а также позволяют осуществлять вы­бор решений из множеств альтернатив различного типа при нали­чии критериев, имеющих разные типы шкал измерения (эти ме­тоды относятся к четвертой группе).

В свою очередь, среди методов, образующих четвертую груп­пу, наиболее перспективными являются декомпозиционные мето­ды теории ожидаемой полезности, методы анализа иерархий и теории нечетких множеств. Данный выбор определен тем, что эти методы в наибольшей степени удовлетворяют требованиям универсальности, учета многокритериальности выбора в условиях неопределенности из дискретного или непрерывного множества альтернатив, простоты подготовки и переработки экспертной информации.

Охарактеризовать достаточно полно все методы принятия реше­ний, относящиеся к четвертой группе, в рамках данной работы невозможно, поэтому в дальнейшем рассматриваются только три подхода к принятию решений в условиях неопределенности, кото­рые получили наиболее широкое воплощение в системах компью­терной поддержки, а именно: подходы, основанные на методах те­ории полезности, анализа иерархий и теории нечетких множеств.

1.5. Характеристика методов теории полезности

Декомпозиционные методы теории ожидаемой полезности по­лучили наиболее широкое распространение среди группы аксио­матических методов принятия решений в условиях риска и нео­пределенности.

Основная идея этой теории состоит в получении количествен­ных оценок полезности возможных исходов, которые являются следствиями процессов принятия решений. В дальнейшем на ос­новании этих оценок можно выбрать наилучший исход. Для полу­чения оценок полезности необходимо иметь информацию о пред­почтениях лица, ответственного за принимаемое решение.