Смекни!
smekni.com

Анализ, синтез, планирование решений в экономике (стр. 41 из 65)

Таблица 5.2

Представление знаний об альтернативе в виде множества классификационных признаков

5.4. Кластерный анализ морфологических множеств

Основы кластерного анализа систем

Для выявления закономерностей строения сложных систем целесообразно в первую очередь собранные данные разложить "по полочкам", классифицировать. Вопросы кластерного анализа рас­смотрены в учебнике А. М. Дуброва, В. С. Мхитаряна, Л. И. Трошиной [З].

Стремление собрать похожие объекты "в кучу" вполне понят­но, поскольку именно классификация помогает исследователю ориентироваться в огромном многообразии объектов и тем самым является средством экономии памяти. В общем виде классифика­ции позволяют, с одной стороны, относить объекты к одному из классов, а с другой — формировать сами "образы", число кото­рых заранее может быть неизвестно.

Таким образом, анализ структуры данных — необходимый этап проводимых исследований. Особую актуальность классификаци­онные построения приобретают при разработке новых информа­ционных технологий, предназначенных для исследования сложных систем.

Рассмотрению подлежат в основном детерминистские методы построения и исследования систем-классификаций, основанные на качественных и количественных признаках.

Системы-классификации

Система определяется как непустое множество объектов (или несколько таких множеств), между которыми установлены неко­торые отношения. Таким образом, в системе набор элементов рассматривается как целостное единство, обладающее интегративными свойствами и противостоящее окружению или среде.

Система может быть представлена пятеркой:

Если хотя бы один член пятерки изменяется во времени или пространстве, то система называется динамичной, в противном случае — статичной.

Системы-классификации — это результат классификационных построений на множествах объектов. Примерами таких систем могут являться множество описаний объектов с заданным отно­шением эквивалентности, т.е. принадлежности к одному и тому же классу; множество классов с заданным отношением иерархии; множество классификаций с заданным отношением доминирова­ния и т.д. В приведенных примерах указаны системы-модели, т.е. некоторые абстрактные аналоги реальных систем, которые значи­тельно проще последних по большинству аспектов, исключая са­мые важные для конкретного рассмотрения. Системы-классифи­кации сочетают субъективные и объективные начала, так как че­ловек при классификационных построениях учитывает лишь ог­раниченное число признаков из бесконечного числа возможных. Таким образом, для бесконечного набора, которым обладает ре­альный объект, существует также бесконечное множество вариан­тов выбора ограниченных наборов.

Следовательно, если множество признаков, учитываемое на объектах, является системой описания, а множество значений каж­дого из учитываемых признаков на конкретных объектах — опи­санием этих объектов, то аналоги-модели объектов (в частности, системы-классификации) — это системы множеств, каждое из ко­торых есть описание. Система-модель С = С ( I, R, A(S), A(ps) , A(SP) ) является образом системы-оригинала С' = С ( I', R', А(S')), A(RS'), A(SR')). Отображение множества С' на множество С являет­ся гомоморфным, если С имеет тот же состав, что и С' (обратное неверно). Из сказанного видно, что система-модель содержит мень­шее число элементов и связей, чем система-оригинал, но все эле­менты и связи, которые имеются в модели, правильно копируют прототип.

Для выбора "правильной модели" не существует формальной процедуры, она определяется целями классификационных пост­роений и уровнем знаний конкретного исследователя.

Основные этапы построения и исследования систем-классификаций

Первым этапом классификационных построений является глу­бокое проникновение в суть рассматриваемых явлений и выбор соответствующего принципа классификации.

Второй этап — установление списка признаков и их значений, подлежащих учету на отдельных объектах. В список включаются признаки, наиболее полно характеризующие изучаемые объекты в смысле заданной цели. Из рассмотрения исключаются признаки, имеющие слабые разделительные свойства.

Третий этап — отбор репрезентативной выборки объектов и производство измерений.

Четвертый этап — выбор отношений на множестве описаний объектов; мер, порождающих отношения; решающих правил и критериев эффективности. Здесь же производятся вычисления.

Пятый этап — построение и анализ структурной схемы систе­мы, в которой связи между элементами соответствуют выполне­нию отношений между ними. Способом представления структур­ных схем являются графы и дендрограммы.

Шестой этап — интерпретация полученных результатов, т. е. перенос полученных утверждений с системы-модели на систему-прототип.

Первые три этапа построения систем-классификаций составля­ют творческую часть процедуры классификации, которая целиком зависит от исследователя и не может быть формализована.

На четвертом и пятом этапах классификации требуется перера­батывать большой объем информации по определенным правилам логики. В связи с этим актуальной становится задача формализа­ции процедур на этих этапах и реализации их в виде компьютер­ных систем.

Виды измерений

Системы, подлежащие классификации, изучаются прежде все­го относительно наличия у них характерных свойств или состоя­ний, которые отражаются различными признаками. Значения при­знаков могут измеряться с различной точностью.

Для измерения признаков применяются шкалы наименований, порядка, отношений, балльные, интервалов.

При использовании шкалы наименований указывается только, одинаковы или нет объекты относительно измеряемого признака.

Порядковые или ранговые признаки сравниваются только по отношению "больше — меньше".

Более точные измерения предполагают и большее число значе­ний. В этом случае используются балльные шкалы. Значения бал­льной шкалы представляют собой ограниченный дискретный ряд чисел, отстоящих друг от друга на одинаковом расстоянии.

При дальнейшем увеличении точности измерений число зна­чений можно увеличивать, доводя его до максимально осуще­ствимого.

Условно все виды оценок делят на качественные и количествен­ные. В соответствии с рекомендациями, приведенными в работе [4], качественными можно считать только те из них, которые из­меряются в шкале наименований.

Формализация обработки качественных признаков

Множество вариантов, систематизированных в морфологичес­ких таблицах, может быть отражено списком качественных при­знаков. Список признаков, определяющий вариант морфологичес­кого множества, представляет его признаковый образ. Количество признаковых образов и собственно признаков, используемое в конкретном исследовании, может быть достаточно большим. Это делает морфологическое множество труднообозримым и малодо­ступным для анализа на умозрительном уровне.

Более четкие результаты могут быть получены при использо­вании математических методов, специально предназначенных для сжатия информации и количественной характеристики интегри­рованных свойств анализируемого материала.

Множество образов вариантов систем может быть представ­лено как матрица, имеющая q столбцов и р строк (порядка p х q), причем номеру столбца соответствует наименование системы Sj (j = 1, 2, ... , q), а номеру строки — название признака Zi (i =1, 2,..., р). В ряде случаев номеру строки ставится в соответ­ствие значение признака. Информационным содержанием мат­риц являются указания о присутствии или отсутствии каждого из учитываемых признаков в рассматриваемых системах. При этом если i-й признак присутствует в j-й системе, то на пересе­чении i-й строки и j-ro столбца помещается "1", в противном случае — "0".

Любой j-й столбец матрицы назовем описанием j-й системы, любую i-ю строку — описанием i-го признака. В терминах теории множеств

Формула (5.1) читается: семейство множеств S, состоящее из всех Sj, таких, у которых элементы j принадлежат множеству J. Аналогично семейство множеств

есть индексированное множество, а I — индексное множество:

Индексация позволяет различать множества, состоящие из оди­наковых элементов.

Пример матрицы образов представлен в табл. 5.3.

Таблица 5.3

Матрица образов как семейство множеств

S1

S2

S3

Sq

Z1

0

1

0

1

Z2

1

1

0

1

Z3

1

1

1

0

...

...

Zp

0

0

0

0

0

Семейство множеств S или Z с заданными на них отношения­ми можно рассматривать как системы, в которых связи между элементами образуют определенную структуру. Следовательно, содержание задач по обработке матриц образов систем включает подбор типов отношений и анализ структуры порождаемых ими систем.