Мультипликативная целевая функция. Найти подмножество SÎ W, для элементов которого
Вопрос о том, какая из этих двух средневзвешенных более адекватно отражает поведение человека, принимающего решение с учетом не одного, а нескольких показателей, был предметом научной дискуссии Галилея с Ноццолино еще в 17в. (Галилей отдавал предпочтение среднегеометрическому, а Ноццолино — среднеарифметическому). С тех пор многие ученые — специалисты в области статистики, психофизиологии и другие высказывали различные теоретические доводы в пользу каждой из этих двух средневзвешенных. В различных областях науки и практики аддитивный показатель качества в виде средневзвешенной арифметической используется гораздо чаще, чем другие виды средневзвешенных (например, среднегеометрическая). Однако использование аддитивного показателя качества требует, чтобы между относительными показателями любых свойств существовала независимость по предпочтению.
Решение второй задачи сводится к поиску в морфологическом множестве подмножества вариантов систем, наиболее сходных с поисковым заданием. Целевая функция в этой задаче определяется следующим образом: найти подмножество SÎ W, для элементов которого
где С(Si1, S2) — мера сходства между описанием рассматриваемого варианта системы Si1 и описанием поискового задания S2;
x1lm, x2l — числовые значения критериев качества, характеризующие соответственно рассматриваемый вариант системы и поисковое задание;
L — может иметь два значения и определять либо число обобщенных функциональных подсистем, либо число критериев качества, которыми на количественном уровне охарактеризованы описания Si1 и S2;
т — порядковый номер альтернативы в строке морфологической матрицы.
Первое значение индекс L имеет в том случае, если x1lm и x2l представляют интегральную оценку по множеству критериев качества, характеризующих альтернативу Аlm, являющуюся компонентом описания рассматриваемой системы Si1 и описания системы S2, выступающей в роли поискового задания (это могут быть прототип, идеальная система, желаемая система).
Второе значение индекс L имеет в случае, когда x1lm и x2l представляют неинтегральные по множеству критериев качества значения, характеризующие в целом альтернативу рассматриваемых вариантов систем и поискового задания. Верхние индексы указывают на принадлежность к рассматриваемому варианту системы (индекс равен единице) и поисковому заданию (индекс равен двум).
Если в выражении (5.12) х1lт и x2i отражают интегральные значения всего множества критериев, характеризующих альтернативы, то при необходимости учета различной степени влияния на меру сходства функциональных подсистем в числитель и знаменатель после знака суммы необходимо добавить весовой коэффициент wl и присвоить соответствующие значения каждой функциональной подсистеме. Если x1lm и х2l, отражают значения индивидуальных критериев качества, то для учета влияния на меру сходства (5.12) одновременно функциональных подсистем и критериев качества необходимо ввести два весовых коэффициента. В этом случае целевая функция будет иметь следующий вид: найти подмножество SÎ W, для элементов которого
где rl — весовой коэффициент, определяющий вклад в меру сходства критериев качества обобщенной функциональной подсистемы ОФПСl;
wlp — весовой коэффициент, определяющий вклад в меру сходства критерия качества Кp по которому оценивается ОФПСl;
L — число обобщенных функциональных подсистем;
P — число критериев качества, характеризующих альтернативы Аlm и Аl, причем Р = 1,2,..., r при l = 1; Р = 1,2,..., s при l = 2; Р = 1,2,..., t при l = h;
x1lpm - оценка по критерию качества Кр альтернативы Аlm, участвующей в синтезе и принадлежащей обобщенной функциональной подсистеме ОФПСl;
x2lp — оценка по критерию качества Кр обобщенной функциональной подсистемы ОФПСl, принадлежащей системе, представляющей поисковое задание.
Рассмотрим примеры синтеза вариантов систем на основе аддитивной целевой функции и на принципе определения меры сходства между вариантом и поисковым заданием. Используем для этой цели ранее построенную морфологическую таблицу (см. рис. 5.9).
Строго упорядочим по значимости обобщенные функциональные подсистемы (строки) сверху вниз и альтернативы в каждой строке — слева направо. Осуществим синтез всех вариантов систем по лексикографическому принципу, подобному упорядочению слов в словарях. Для каждого варианта рассчитаем значение аддитивной целевой функции по выражению (5.10). Упорядочив варианты в направлении уменьшения значений целевой функции (табл. 5.13), можно определить подмножество наиболее эффективных решений, которые подлежат дополнительному анализу. К таким решениям относятся, например, варианты 16, 10 и 4.
Таблица 5.13
Значения эффективности и сходства синтезированных систем
Сформулируем поисковое задание из альтернатив, содержащихся в морфологической таблице. Примем в качестве поискового задания интегральные значения критериев качества, относящиеся к альтернативам, из которых состоит наилучший вариант, синтезированный на основе аддитивной целевой функции. Лучший вариант состоит из альтернатив (А13, A22, А31). Расчет мер сходства по формуле (5.13) между лучшим вариантом и всеми остальными синтезированными вариантами (см. табл. 5.13) позволил проранжировать последние по степени близости к поисковому заданию. Сравнительный анализ результатов показал, что все синтезированные варианты имеют ранг близости к наиболее эффективному решению такой же, как и при расчете их эффективности по аддитивной целевой функции.
Учет при синтезе различного вклада функциональных подсистем в эффективность целостной системы
Функциональные подсистемы, из которых состоит некоторая функциональная система, могут вносить различный вклад в ее эффективность и новизну. Поэтому в таких случаях, помимо оценки относительного вклада в эффективность и новизну альтернатив, необходимо оценивать относительный вклад функциональных подсистем.
Для решения данной задачи выполняются следующие процедуры.
1. Строится морфологическая таблица, наименованиями строк которой являются обобщенные функциональные подсистемы исследуемой системы, а наименованиями столбцов — альтернативы.
2. Морфологическая таблица преобразуется в трехуровневую иерархию в виде перевернутого дерева (рис. 5.10), отражающую множество функциональных реализаций. Фокусом иерархии является наименование исследуемого множества технических систем. Уровень 2 иерархии образуют обобщенные функциональные подсистемы (ОФПСi), т. е. наименования строк морфологической матрицы. Каждая обобщенная функциональная подсистема конкретизируется своим подмножеством альтернативных функциональных реализаций (Аij), образующих уровень 3 иерархии.
3. Составляются иерархические структуры критериев качества для определения векторов приоритетов обобщенных функциональных подсистем и альтернатив, конкретизирующих указанные подсистемы. Для оценки обобщенных функциональных подсистем и альтернатив могут использоваться как одинаковые по структуре и содержанию иерархии критериев качества, так и различающиеся.
Следует отметить, что оценка по иерархиям критериев второго типа имеет наибольшее распространение.
4. Для сформированных иерархий рассчитывают векторы приоритетов альтернатив
принадлежащих каждой обобщенной функциональной подсистеме, и вектор приоритетов WОФПС собственно обобщенных функциональных подсистем. Последний определяет их вклад в эффективность и новизну системы в целом.Значения векторов приоритетов приписываются соответствующим элементам иерархии (см. рис. 5.10), отражающей множество функциональных реализаций. При этом рассчитанные векторы нормированы следующим образом:
5. На основании предшествующей информации производится иерархический синтез по алгоритму, предназначенному для осуществления свертки в иерархиях с несколькими ветвями, имеющих различное число альтернатив под критериями. В результате получаем нормированный вектор приоритетов всех альтернатив относительно фокуса иерархии.
6. Полученные значения векторов приоритетов альтернатив заносятся в соответствующие ячейки первоначальной морфологической матрицы, на которой осуществляются комбинаторный синтез систем и вычисление для них значений целевых функций аддитивным или мультипликативным методом.