Смекни!
smekni.com

Анализ, синтез, планирование решений в экономике (стр. 5 из 65)

Парадигма анализа решения может быть сведена к процессу, включающему пять этапов [10].

Этап 1. Предварительный анализ. На этом этапе формулиру­ется проблема и определяются возможные варианты действий, которые можно предпринять в процессе ее решения.

Этап 2. Структурный анализ. Этот этап предусматривает структуризацию проблемы на качественном уровне, на котором ЛПР намечает основные шаги процесса принятия решений и пы­тается упорядочить их в виде некоторой последовательности. Для этой цели строится дерево решений, (рис.1.3).

Рис. 1.3. Фрагмент дерева решений

Дерево решений имеет два типа вершин: вершины-решения (обозначены квадратиками) и вершины-случаи (обозначены кружочками). В вершинах-решениях выбор полностью зависит от ЛПР, в вершинах-случаях ЛПР не полностью контролирует выбор, так как случайные собы­тия можно предвидеть лишь с некоторой вероятностью.

Этап 3. Анализ неопределенности. На этом этапе ЛПР уста­навливает значения вероятности для тех ветвей на дереве реше­ний, которые начинаются в вершинах-случаях. При этом получен­ные значения вероятностей подлежат проверке на наличие внут­ренней согласованности.

Для получения значений вероятности привлекается вся доступ­ная информация: статистические данные, результаты моделирова­ния, экспертная информация и т. д.

Этап 4. Анализ полезности. На данном этапе следует полу­чить количественные оценки полезности последствий (исходов), связанных с реализацией того или иного пути на дереве решений. На рис. 1.3 показан один из возможных путей — от начала до точки G.

Исходы (последствия принимаемых решений) оцениваются с помощью функции полезности фон Неймана — Моргенштерна [39], которая каждому исходу rk ставит в соответствие его полез­ность и(rk). Построение функции полезности осуществляется на основе знаний ЛПР и экспертов.

Этап 5. Процедуры оптимизации. Оптимальная стратегия действий (альтернатива, путь на дереве решений) может быть найдена с помощью вычислений, а именно: максимизации ожида­емой полезности на всем пространстве возможных исходов. Одно из условий постановки задачи оптимизации — наличие адекватной математической модели, которая связывает параметры опти­мизации (в данном случае это альтернативные варианты действий) с переменными, входящими в целевую функцию (функция полез­ности). В методах теории полезности такие модели имеют вероят­ностный характер и основаны на том, что оценка вероятности ожи­даемого исхода может быть использована для введения числовых оценок возможных вероятных распределений на конечном мно­жестве исходов.

Задача выбора наилучшего решения в соответствии с аксиома­тикой теории полезности [10] может быть представлена следую­щим образом:

где и(К) — многомерная функция полезности;

К— точка в критериальном пространстве;

f(K/A) — функция плотности условного от альтернативы А распределения кри­териальных оценок.

Построение функций полезности является основной и наибо­лее трудоемкой процедурой методов теории полезности, после этого с помощью такой функции можно оценить любое количе­ство альтернатив.

Процедура построения функции полезности включает пять шагов.

Шаг 1. Подготовительный. Главная задача здесь — подбор эк­спертов и разъяснение им того, как следует выражать свои пред­почтения.

Шаг 2. Определение вида функции. Функция полезности дол­жна отражать представления ЛПР и экспертов об ожидаемой по­лезности возможных исходов. Поэтому множество исходов упоря­дочивается по их предпочтительности, после чего в соответствие каждому возможному исходу необходимо поставить предполагае­мое значение ожидаемой полезности. На этом шаге выясняют, является ли функция полезности монотонной, убывающей или возрастающей, отражает ли она склонность, несклонность или безразличие к риску и т. п.

Шаг 3. Установление количественных ограничений. Здесь оп­ределяется интервал изменения аргумента функции полезности и устанавливаются значения функции полезности для нескольких контрольных точек.

Шаг 4. Подбор функции полезности. Необходимо выяснить, являются ли согласованными количественные и качественные ха­рактеристики, выявленные к данному моменту. Положительный ответ на этот вопрос равнозначен существованию некоторой фун­кции, которая обладает всеми требуемыми свойствами. Если пос­ледует отрицательный ответ, то возникает проблема согласования свойств, что предполагает возврат на более ранние шаги.

Шаг 5. Проверка адекватности. Необходимо убедиться в том, что построенная функция полезности действительно полностью соответствует истинным предпочтениям ЛПР. Для этого применя­ются традиционные методы сравнения расчетных значений с экс­периментальными.

Рассмотренная процедура соответствует задаче со скалярной функцией полезности. В общем случае последняя может быть векторной величиной. Это имеет место, когда ожидаемую полез­ность невозможно представить единственной количественной ха­рактеристикой (задача со многими критериями). Обычно много­мерная функция полезности представляется как аддитивная или мультипликативная функция частных полезностей. Процедура построения многомерной функции полезности еще более трудо­емка, чем одномерной.

Таким образом, методы теории полезности занимают проме­жуточное место между методами принятия решений в услови­ях определенности и методами, направленными на выбор альтернатив в условиях неопределенности. Для применения этих методов необходимо иметь количественную зависимость меж­ду исходами и альтернативами, а также экспертную информа­цию для построения функции полезности. Эти условия выпол­няются не всегда, что накладывает ограничение на применение методов теории полезности. К тому же следует помнить, что процедура построения функции полезности трудоемка и плохо формализуема.

В настоящее время методы теории полезности достаточно хоро­шо освещены в отечественной научной и учебной литературе [2, 8, 10, 11, 22]. Особого внимания заслуживают работы отечественных ученых: А. М. Дуброва, Б. А. Лагоши, Е. Ю. Хрусталева [40], а также Н. В. Князевского и В. С. Князевской [41]. На основе этих методов реализованы разнообразные компьютерные системы. Наи­большую популярность приобрела промышленная диалоговая сис­тема "Альтернатива — Ф", реализующая методы теории полезнос­ти и обеспечивающая решение задач многокритериального выбора в условиях определенности, риска и неопределенности [8].

С учетом сказанного в настоящем учебнике представлены наи­более универсальные и менее освещенные в отечественной учеб­ной литературе подходы к принятию решений в условиях неопре­деленности. Наиболее подробно нами будут рассмотрены автома­тизированные методы анализа иерархий и теории нечетких мно­жеств, а также методология по их применению для решения экономических задач.

Основные понятия

1. Принятие решений.

2. Дескриптивный, прескриптивный и нормативный подходы.

3. Формальная модель задачи принятия решений.

4. Задачи выбора.

5. Ситуация выбора.

6. Метод принятия решений.

Контрольные вопросы и задания

1. Укажите особенности дескриптивного, прескриптивного и норматив­ного подходов к принятию решений.

2. Дайте характеристику формальной модели задачи принятия решений.

3. Приведите основные классификационные признаки задач принятия решений.

4. Какова роль ЭВМ в принятии решений?

5. Охарактеризуйте нетривиальные задачи принятия решений.

6. Перечислите и укажите отличительные признаки основных методов принятия решений.

Литература

1. Леонтьев В. В. Межотраслевая экономика/Под ред. А. Г. Гранберга.— М.: Экономика, 1997. — 471 с.

2. Ларичев О. И., Браун Р. Количественный и вербальный анализ ре­шений: сравнительное исследование возможностей и ограничений //Экономика и математические методы. — 1998. — Т. 34. — Вып. 4.—С. 97—107.

3. Канторович Л. В., Горстко А. Б. Оптимальные решения в экономи­ке. — М.: Наука, 1972. — 231 с.

4. Федоренко Н. П. Оптимизация экономики: некоторые вопросы ис­пользования экономико-математических методов в народном хозяй­стве. — М.: Наука, 1997. — 287 с.

5. Багриновский К. А., Логвинец В.В. Интеллектуальная система в от­раслевом планировании/Отв. ред. В. Н. Буркова — М.: Наука, 1998.— 136 с.

6. Медницкий В. Г. Оптимизация перспективного планирования.— М.: Наука, 1984. — 152 с.

7. Нечеткие множества и теория возможностей. Последние достиже­ния: Пер. с англ./ Под ред. Р. Р. Ягера — М.: Радио и связь, 1986. — 408 с.

8. Борисов А. Н., Виллюмс Э. Р., Сукур Л. Я. Диалоговые системы при­нятия решений на базе мини-ЭВМ.— Рига: Зинатне, 1986. — 195 с.

9. Статистические модели и многокритериальные задачи принятия решений: Сб. статей / Сост. и науч. ред. И. Ф. Шахнов. — М.: Ста­тистика, 1979. — 184 с.

10. Кини Р. Л., Райфа X. Принятие решений при многих критериях: предпочтения и замещения: Пер. с англ./ Под ред. И. Р. Шахова. — М.: Радио и связь, 1981. — 560 с.

11. Райфа Г. Анализ решений (введение в проблему выбора в условиях неопределенности): Пер. с англ. — М.: Наука, 1977. — 408 с.

12. Мелихов А. Н., Бернштейн Л. С., Коровин С. Я. Ситуационные советующие системы с нечеткой логикой. — М.: Наука, 1990. — 272 с.