13. Беллман Р., Заде Л. Принятие решений в расплывчатых условиях // Вопросы анализа и процедуры принятия решений: Пер. с англ. — М.: Мир, 1976. — С. 172 — 175.
14. Кофман А. Введение в теорию нечетких множеств: Пер. с англ. — М.: Радио и связь, 1982. — 432 с.
15. Орловский С. А. Проблемы принятия решений при нечеткой исходной информации. — М.: Наука, 1981. — 208 с.
16. Юдин Д. Б. Вычислительные методы теории принятия решений. — М.: Наука, 1989. — 320 с.
17. Борисов А. Н., Крумберг О. А., Федоров И. П. Принятие решений на основе нечетких моделей. — Рига: Зинатне, 1990. — 184 с.
18. Борисов А. Н. Методическое обеспечение технологии принятия решений // Системы обработки знаний в автоматизированном проектировании. — Рига: Изд-во Риж. техн. ун-та, 1992. — С. 12—15.
19. Ларичев О. И. Человеко-машинные процедуры принятия решений// Автоматика и телемеханика. — 1971. —№ 12. —С. 130 — 142.
20. Ларичев О. И. Наука и искусство принятия решений. — М.: Наука, 1979.—200с.
21. Модели и методы векторной оптимизации / С.В.Емельянов, В.И.Борисов, А.А.Малевич, А.М.Черкашин// Техническая кибернетика. Итоги науки и техники. — М.: ВИНИТИ, 1973. — Т.5. — С. 386 — 448.
22. Фишберн П. С. Теория полезности для принятия решений: Пер. с англ. — М.: Наука, 1977. — 352 с.
23. Krisher J. P. An annotated bibliography of decision analytic applications to health care//Operations Research. — 1980. — V. 28. — № 1. — P. 97 — 107.
24. Ларичев О. И. Анализ процессов принятия человеком решений при альтернативах, имеющих оценки по многим критериям// Автоматика и телемеханика.—1981.—№8.—С. 131—141.
25. Подиновский В. В., Ногин В. Д. Парето-оптимальные решения многокритериальных задач. — М.: Наука, 1982. — 256 с,
26. Беляев Л. С. Решение сложных оптимизационных задач в условиях неопределенности. — Новосибирск: Наука, 1978. — 126 с.
27. Чернов Г., Мозес Л. Элементарная теория статистических решений: Пер. с англ. — М.: Сов. радио, 1962. — 406 с.
28. Руководство по системе "Планирование, программирование, разработка бюджета"// Новое в теории и практике управления производством в США / Под ред. Б. З. Мильнера. — М.: Прогресс, 1971. — С. 181 —202.
29. Борисов В. Н. Векторная оптимизация систем// Исследование систем: Материалы Всесоюзного симпозиума. — М.: ВИНИТИ, 1971.—С. 106— 114.
30. Евланов Л. Г. Теория и практика принятия решений. — М.: Экономика, 1984. — 176 с.
31. Руа Б. Классификация и выбор при наличии нескольких критериев (метод ЭЛЕКТРА): Пер. с франц.// Вопросы анализа и процедуры принятия решений. — М.: Мир, 1976. — С. 80 — 107.
32. Интерактивный метод решения задачи оптимального проектирования машин / И. И. Артоболевский, С. В. Емельянов, В. И. Сергеев и др.// Докл. АН СССР, 1977. Т. 237. — № 4. — С. 793 — 795.
33. Ларичев О. И. Человеко-машинные процедуры принятия решений при альтернативах, имеющих оценки по многим критериям (обзор) // Автоматика и телемеханика. — 1971. — № 12. — С. 130 — 142.
34. Борисов А. Н., Левченко А. С. Методы интерактивной оценки решений. — Рига: Зинатне, 1982. — 139 с.
35. Федулов А. А., Федулов Ю. Г., Цыгичко В. Н. Введение в теорию статистически ненадежных решений. — М.: Статистика, 1979. — 276 с.
36. Саати Т. Принятие решений. Метод анализа иеархий: Пер.с англ. — М.: Радио и связь, 1989. — 316 с.
37. Заде Л. Понятие лингвистической переменной и его применение к принятию приближенных решений: Пер. с англ. — М.: Мир, 1976. — 165 с.
38. Райфа Г. Анализ решений (введение в проблему выбора в условиях неопределенности): Пер. с англ. — М.: Наука, 1977. — 406 с.
39. Нейман Дж., фон, Моргенштерн О. Теория игр и экономическое поведение: Пер с англ. — М.: Наука, 1970. — 707 с.
40. Дубров А. М., Лагоша Б. А., Хрусталев» Е. Ю. Моделирование рисковых ситуаций в экономике и бизнесе: Учеб. пособие/ Под ред. Б. А. Лагоши. — М.: Финансы и статистика, 1999. — 176 с.
41. Князевский Н. В., Князевская В. С. Принятие рискованных решений в экономике и бизнесе: Учеб. пособие. — М.: Контур, 1998. — 160 с.
ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ МЕТОДА АНАЛИЗА ИЕРАРХИЙ
Метод анализа иерархий (МАИ) [1,2] предполагает декомпозицию проблемы на все более простые составляющие части и обработку суждений лица, принимающего решение. В результате определяется относительная значимость исследуемых альтернатив для всех критериев, находящихся в иерархии. Относительная значимость выражается численно в виде векторов приоритетов. Полученные таким образом значения векторов являются оценками в шкале отношений и соответствуют так называемым жестким оценкам.
Можно выделить ряд модификаций МАИ, которые определяются характером связей между критериями и альтернативами, расположенными на самом нижнем уровне иерархии, а также методом сравнения альтернатив.
По характеру связей между критериями и альтернативами определяется два типа иерархий. К первому типу относятся такие, у которых каждый критерий, имеющий связь с альтернативами, связан со всеми рассматриваемыми альтернативами (тип иерархий с одинаковыми числом и функциональным составом альтернатив под критериями). Ко второму типу иерархий принадлежат такие, у которых каждый критерий, имеющий связь с альтернативами, связан не со всеми рассматриваемыми альтернативами (тип иерархий с различными числом и функциональным составом альтернатив под критериями).
В МАИ имеется три метода сравнения альтернатив: попарное сравнение; сравнение альтернатив относительно стандартов и сравнение альтернатив копированием.
Ниже рассматриваются методология МАИ и отличительные особенности его модификаций.
2.1. Иерархическое представление проблемы, шкала отношений и матрицы парных сравнений
Иерархическое представление проблемы
В первой модификации метода рассматривается иерархия с одинаковыми числом и функциональным составом альтернатив под критериями и метод попарного сравнения элементов иерархии. Построение иерархии начинается с очерчивания проблемы исследования. Далее строится собственно иерархия, включающая цель, расположенную в ее вершине, промежуточные уровни (например, критерии) и альтернативы, формирующие самый нижний иерархический уровень.
На рис. 2.1 приведен общий вид иерархии, где Еij — элементы иерархии, Аi — альтернативы.
Верхний индекс у элементов указывает уровень иерархии, а нижний индекс — их порядковый номер. Существует несколько альтернативных способов графического отображения иерархии.
На рис. 2.2 приведены три варианта отображения одной иерархии.
Первый вариант — конкретизация (декомпозиция) заданного множества элементов (в частности, критериев). Второй вариант противоположен первому и предполагает синтез более общих элементов из заданных частных. Третий вариант — упорядочение предварительно заданного множества элементов на основе их попарного сравнения.
Шкала отношений
Для установления относительной важности элементов иерархии используется шкала отношений (табл. 2.1). Данная шкала позволяет ЛПР ставить в соответствие степеням предпочтения одного сравниваемого объекта перед другим некоторые числа.
Таблица 2.1
Шкала отношений (степени значимости действий)
Степень значимости | Определение | Объяснение |
1 | Одинаковая значимость | Два действия вносят одинаковый вклад в достижение цели |
3 | Некоторое преобладание значимости одного действия над другим (слабая значимость) | Существуют соображения в пользу предпочтения одного из действий, однако эти соображения недостаточно убедительны |
5 | Существенная или сильная значимость | Имеются надежные данные или логические суждения для того, чтобы показать предпочтительность одного из действий |
7 | Очевидная или очень сильная значимость | Убедительное свидетельство в пользу одного действия перед другим |
9 | Абсолютная значимость | Свидетельства в пользу предпочтения одного действия другому в высшей степени убедительны |
2,4,6,8 | Промежуточные значения между двумя соседними суждениями | Ситуация, когда необходимо компромиссное решение |
Обратные величины приведен-ных выше ненулевых величин | Если действию i при сравнении с действием j приписывается одно из определенных выше ненулевых чисел, то действию j при сравнении с действием i приписывается обратное значение | Если согласованность была постулирована при получении N числовых значений для образования матрицы |
Правомочность этой шкалы доказана теоретически при сравнении со многими другими шкалами [2]. При использовании указанной шкалы ЛПР, сравнивая два объекта в смысле достижения цели, расположенной на вышележащем уровне иерархии, должен поставить в соответствие этому сравнению число в интервале от 1 до 9 или обратное значение чисел. В тех случаях, когда трудно различить столько промежуточных градаций от абсолютного до слабого предпочтения или этого не требуется в конкретной задаче, может использоваться шкала с меньшим числом градаций. В пределе шкала имеет две оценки: 1 — объекты равнозначны; 2 — предпочтение одного объекта над другим.