Смекни!
smekni.com

Анализ, синтез, планирование решений в экономике (стр. 8 из 65)

При нарушении однородности ранг матрицы отличен от еди­ницы и она будет иметь несколько собственных значений. Однако при небольших отклонениях суждений от однородности одно из собственных значений будет существенно больше остальных и приблизительно равно порядку матрицы. Таким образом, для оцен­ки однородности суждений эксперта необходимо использовать отклонение величины максимального собственного значения λmax от порядка матрицы п.

Однородность суждений оценивается индексом однородности (ИО) или отношением однородности (OO) в соответствии со сле­дующими выражениями:

где М(ИО) — среднее значение (математическое ожидание) индекса однородно­сти случайным образом составленной матрицы парных сравнений [E], которое основано на экспериментальных данных (табл. 2.3), полученных в работе [2].

Таблица 2.3

Среднее значение индекса однородности в зависимости от порядка матрицы

Порядок матрицы (п)

М(ИО)

Порядок матрицы (и)

М(ИО)

Порядок матрицы (п)

М(ИО)

1

0,00

6

1,24

11

1,51

2

0,00

7

1,32

12

1,48

3

0,58

8

1,41

13

1,56

4

0,90

9

1,45

14

1,57

5

1,12

10

1.49

15

1,59

В качестве допустимого используется значение OO ≤ 0,10. Если для матрицы парных сравнений отношение однородности OO > 0,10, то это свидетельствует о существенном нарушении логичности суждений, допущенном экспертом при заполнении матрицы, по­этому эксперту предлагается пересмотреть данные, использован­ные для построения матрицы, чтобы улучшить однородность.

2.3. Синтез приоритетов на иерархии и оценка ее однородности

Иерархический синтез

Иерархический синтез используется для взвешивания собствен­ных векторов матриц парных сравнений альтернатив весами кри­териев (элементов), имеющихся в иерархии, а также для вычисления суммы по всем соответствующим взвешенным компонентам собственных векторов нижележащего уровня иерархии. Ниже рас­сматривается алгоритм иерархического синтеза с учетом обозна­чений, принятых в предыдущей иерархии (см. рис. 2.1).

Ш а г 1. Определяются векторы приоритетов альтернатив

относительно элементов Eij предпоследнего уровня иерархии (i = S). Здесь через Eij обозначены элементы иерархии, причем верхний индекс i указывает уровень иерархии, а нижний индекс j порядковый номер элемента на уровне. Вычисление множе­ства векторов приоритетов альтернатив WAS относительно уровня иерархии S осуществляется по итерационному алгоритму, реализо­ванному на основе соотношений (2.2) и (2.3) по исходным дан­ным, зафиксированным в матрицах попарных сравнений. В резуль­тате определяется множество векторов:

Ш а г 2. Аналогичным образом обрабатываются матрицы по­парных сравнений собственно элементов Eij. Данные матрицы по­строены таким образом, чтобы определить предпочтительность эле­ментов определенного иерархического уровня относительно эле­ментов вышележащего уровня, с которыми они непосредственно связаны. Например, для вычисления векторов приоритетов элемен­тов третьего иерархического уровня (см. рис. 2.1) обрабатываются следующие три матрицы попарных сравнений:

В матрицах через vj обозначен вес, или интенсивность, Еj-го элемента.

В результате обработки матриц попарных сравнений определя­ется множество векторов приоритетов элементов:

Полученные значения векторов

используются впослед­ствии при определении векторов приоритетов альтернатив отно­сительно всех элементов иерархии.

Шаг 3. Осуществляется собственно иерархический синтез, зак­лючающийся в последовательном определении векторов приори­тетов альтернатив относительно элементов Еij находящихся на всех иерархических уровнях, кроме предпоследнего, содержащего эле­менты ЕSj. Вычисление векторов приоритетов проводится в направ­лении от нижних уровней к верхним с учетом конкретных связей между элементами, принадлежащими различным уровням. Вычис­ление проводится путем перемножения соответствующих векто­ров и матриц.

Общий вид выражения для вычисления векторов приоритетов альтернатив определяется следующим образом:

где

— вектор приоритетов альтернатив относительно элемента E1i-1, определяющий j-й столбец матрицы;

вектор приоритетов элементов E1i-1, E2i-1,..., Eni-1, связанных с эле­ментом Ej вышележащего уровня иерархии.

Ниже приведен конкретный пример по вычислению векторов приоритетов альтернатив относительно элементов третьего (E3j), второго 2j) и первого 1j) уровней иерархии с учетом конкрет­ных связей между элементами иерархии (см. рис. 2.1).

Определение векторов приоритетов альтернатив для элементов второго уровня осуществляется следующим образом:

Результирующий вектор приоритетов альтернатив относитель­но корневой вершины иерархии Е11 вычисляется следующим образом:

Рассмотренная модификация МАИ может эффективно приме­няться при решении широкого класса социально-экономических и управленческих задач.

Оценка однородности иерархии

После решения задачи иерархического синтеза оценивается од­нородность всей иерархии с помощью суммирования показате­лей однородности всех уровней, приведенных путем "взвешивания" к первому иерархическому уровню, где находится корневая вершина. Число шагов алгоритма по вычислению однородности определяется конкретной иерархией.

Рассмотрим принципы вы­числения индекса ИОИ и отно­шения ООИ однородности иерар­хии.

Пусть задана иерархия кри­териев и альтернатив (рис. 2.3.) и для каждого уровня определен индекс однородности и векторы приоритетов критериев следую­щим образом:

ИО1 — индекс однороднос­ти для 1-го уровня;

{ИО2, ИО3} — индексы однородности для 2-го уровня;

{ИО4, ИО5, ИО6} — индексы однородности для 3-го уровня;

{W1} — вектор приоритетов критериев К2 и К3 относительно критерия К1;

{W2},{W3} — векторы приоритетов критериев К4, К5, К6 отно­сительно критериев К2 и К3 второго уровня.

В этом случае индекс однородности рассматриваемой иерар­хии можно определить по формуле

где Т — знак транспонирования.

Определение отношения однородности ООИ для всей иерархии осуществляется по формуле

ООИ = ИОИ / М(ИОИ),

где М(ИОИ) — индекс однородности иерархии при случайном заполнении мат­риц попарных сравнений.

Расчет индекса однородности М(ИОИ) с учетом эксперименталь­ных данных (см. табл. 2.3) выполняется по формуле, аналогичной (2.5):

Однородность иерархии считается удовлетворительной при значениях ООИ ≤ 0,10.

2.4. Учет мнений нескольких экспертов

Для повышения степени объективности и качества процедуры принятия решений целесообразно учитывать мнения нескольких экспертов. С этой целью проводится групповая экспертиза, при­чем множество экспертов может быть подразделено на несколько подмножеств в зависимости от области экспертизы [З], определя­емой характером критериев, используемых в иерархии. Оценка весомости критериев и альтернатив с учетом данного подхода предполагает привлечение специалистов-управленцев, маркетологов, производственников, специалистов-теоретиков и т. п. (рис. 2.4).