В статистической игре (W, D, R), которая посвящена выбору участков земли для посадки картофеля, определим функции риска R(Q, d):
Полученные результаты функций риска R(Q, d) представим в табл. 8.8, откуда видно, что функция решения d2 доминирует над функцией d3. Следовательно, d2 недопустима. Она не относится к подмножеству допустимых функций решения. Мы в этом убедимся при расчете байесовских рисков.
Таблица 8.8
Будем считать, что в рассматриваемом районе априорное распределение состояний природы приводит к одинаковым шансам для сухого и влажного лета при исследовании состояний природы. Значит, Р(Q1) = 0,5; P(Q2) = 0,5.
Вычислим байесовский риск r(x, d):
Минимальный байесовский риск наблюдается для функции d3, что не противоречит выводу, сделанному из табл. 8.8.
Вывод. Нерандомизированная функция решения d3, которая включает решение для d(x1) = а2 и d(x2) = а1, является байесовской функцией решения. Это оптимальная стратегия статистика: в рассматриваемых условиях, если весной много осадков (x1), принимается решение а2о том, что картофель нужно сажать на сухих участках земли А2. Если весной мало осадков (x2), принимается решение а1 о посадке картофеля на участках А1, где влажность почвы большая.
Задача 8.3. Планирование участков земли под посевы картофеля методом линейного программирования. В задаче 8.2 мы получили оптимальное байесовское решение d3. Теперь попробуем получить минимаксную, более осторожную стратегию.
Минимаксную функцию решения следует искать как смешанную стратегию среди рандомизированных функций решения, потому что матрица значений функций риска R(Q, d) для нерандомизированных функций решения d Î D не имеет седловой точки.
Применяя метод линейного программирования и учитывая, что при оптимальном решении ограничения записываются как равенства, получаем из табл. 8.8 при ненулевых значениях h1 и h3 систему уравнений, которая включает цену игры v:
В результате решения этой системы уравнений получим:
Вывод. Минимаксная стратегия, еще более осторожная, чем оптимальная байесовская, для сельскохозяйственного предприятия заключается в использовании стратегий d1 и d3 с вероятностью соответственно 0,04 и 0,96.
Как это применять на практике?
Если весной наблюдается х1 (большое количество осадков), то осуществляется случайный выбор с вероятностями 0,04 и 0,96 одного из решений: а1 или а2. При наблюдении х2 (малое количество осадков весной) принимается решение a1 о посадке картофеля на влажных участках А1.
8.3. СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ПАРТИИ ГОТОВЫХ ИЗДЕЛИЙ И ВЕРОЯТНОСТЬ ПЕРЕБОЕВ ПРОИЗВОДСТВА
На основе статистических планов приемки продукции всегда должно быть известно, сколько изделий следует случайным образом отобрать для статистического контроля и при каких условиях принимается решение о браковке или приемке партии.
Планов контроля имеется большое множество, однако благодаря своей простоте часто применяется одноступенчатый статистический план премки k|n, где п - объем выборки; k - приемочное число. Если из проверенных изделий число дефектных Z не будет превышать k, партия принимается. Значит, k - допустимое число дефектных в выборке из п изделий.
Представитель торгового предприятия при Z £ k считает партию хорошей и принимает ее на основе анализа выборки. Затем производитель покрывает стоимость каждого обнаруженного в переданной партии бракованного изделия путем замены, бесплатного ремонта или другим путем, означенным в договоре.
Если Z > k, то партия не принимается торговым предприятием, а производитель осуществляет сплошную проверку партии и выявляет дефектные изделия.
Задача 8.4. Выбрать оптимальное критическое число k. Значение k может быть определено при помощи статистической игры.
Введем обозначения:
W (WÎW), доля дефектных изделий, - состояние природы Q;
N - объем партии изделии;
W = [0,1] - интервал от 0 до 1 с включением границ этого интервала;
А = {а1, a2}- множество решении статистика, где а1, а2 - решения о приемке и о браковке партии со сплошным ее контролем соответственно;
С1 - затраты на проверку одного изделия;
С2- сумма, уплачиваемая производителем за каждое обнаруженное дефектное изделие после приемки партии.
Функция потерь
где С1п - стоимость контроля выборочной совокупности изделии в процессе контроля;
C2(N–n)W - сумма, выплачиваемая производителем за изделия, когда они окажутся дефектными после приемки;
С1 n + С2(N–п) - затраты на сплошной контроль, если партия не была принята.
Итак, стратегическая игра будет иметь вид (W, A, L). Для определенности будем считать:
• торговая фирма оплачивает только исправные изделия, а дефектные заменяются исправными;
• при большой партии распределение вероятностей случайной переменной - числа дефектных изделий Z - подчиняется биномиальному закону. Функция вероятности зависит от действительной доли бракованных изделий в принимаемой партии W:
• контролер наблюдает число Z в выборке объема п;
• d(Z) = а - статистическая нерандомизированная функция решения контролера. Контролер может принять одно из двух значений: a1 (принять) или a2 (не принять партию).
Однако нам необходимо осуществить оптимальный выбор критического числа k, поэтому перейдем к статистической игре. В этой игре используем информацию о числе Z забракованных изделий в выборке объемом п; распределение Z зависит от состояния природы W - доли дефектных изделий.
Решение. Для состояния природы W и статистической нерандомизированной функции решения d(Z), определяющей критическое число k при контроле партии готовых изделий, можно в статистической игре (W, D, R) найти функцию платежей или функцию риска R(W, d):
Это выражение можно раскрыть, используя биномиальное распределение.
Далее в качестве целевой функции d(Z), определяющей оптимальное критическое число k выберем байесовскую нерандомизированную функцию. Пусть процесс производства является отлаженным, тогда доля дефектных изделий в партии W будет иметь бета-распределение, заданное на интервале [0,1]. В зависимости от принятых параметров р и q можно определить априорное распределение доли дефектных изделий W в принимаемых партиях.
Таким образом, априорным распределением x состояний природы W принимается бета-распределение с функцией плотности
Известно, что существует связь между бета- и гамма-функциями:
Байесовский риск при этом распределении будет
Этот байесовский риск следует минимизировать относительно k. При известных размерах партии N, выборки п, затрат C1 и С2, параметров априорного бета-распределения р и q байесовский риск будет только функцией k:
r(x, d) = f(k).
Теперь нужно найти такое натуральное k, чтобы удовлетворялись неравенства
f(k)£ f(k+1) и f(k)£ f(k–1)
Рассмотрим неравенство f(k)£ f(k+1), из которого следует, что f(k+1) – f(k) ³ 0.
Используя связи между бета- и гамма-распределениями
и формулу гамма-функции Г(n) = (n–1)! , где (n–1)! - факториал, получим f(k+1) – f(k) ³ 0, если С2(р + k + 1)/(р + q + п) – С1 £ 0.Значит, (p+k+1) ³
(p+q+n) и неравенство f(k) £ f(k+ 1) выполняется при k ³ (p+q+n) - (p+1).Обратимся к неравенству f(k–1) – f(k) ³ 0 и найдем значение k, для которого оно выполняется. При этом необходимо преобразовать байесовский риск r(x, d) = f(k), после чего получаем неравенство f(k–1) – f(k) ³ 0, которое выполняется, если С2 р + k)/(p + q + п) – C1 £ 0. Тогда (p + k) £
(p+q+n), т. е. при k£ (p+q+n) - p. В этом случае байесовский риск примет минимальное значение для такого натурального числа k, которое удовлетворяет двойному неравенству: