Смекни!
smekni.com

Моделирование рисковых ситуации в экономике и бизнесе (стр. 24 из 29)

В статистической игре (W, D, R), которая посвящена выбору участков земли для посадки картофеля, определим функции риска R(Q, d):

Полученные результаты функций риска R(Q, d) представим в табл. 8.8, откуда видно, что функция решения d2 доминирует над функцией d3. Следовательно, d2 недопустима. Она не относится к подмножеству допустимых функций решения. Мы в этом убе­димся при расчете байесовских рисков.

Таблица 8.8

Будем считать, что в рассматриваемом районе априорное распределение состояний природы приводит к одинаковым шан­сам для сухого и влажного лета при исследовании состояний природы. Значит, Р(Q1) = 0,5; P(Q2) = 0,5.

Вычислим байесовский риск r(x, d):

Минимальный байесовский риск наблюдается для функции d3, что не противоречит выводу, сделанному из табл. 8.8.

Вывод. Нерандомизированная функция решения d3, кото­рая включает решение для d(x1) = а2 и d(x2) = а1, является бай­есовской функцией решения. Это оптимальная стратегия стати­стика: в рассматриваемых условиях, если весной много осадков (x1), принимается решение а2о том, что картофель нужно сажать на сухих участках земли А2. Если весной мало осадков (x2), при­нимается решение а1 о посадке картофеля на участках А1, где влажность почвы большая.

Задача 8.3. Планирование участков земли под посевы карто­феля методом линейного программирования. В задаче 8.2 мы получили оптимальное байесовское решение d3. Теперь попро­буем получить минимаксную, более осторожную стратегию.

Минимаксную функцию решения следует искать как смешан­ную стратегию среди рандомизированных функций решения, по­тому что матрица значений функций риска R(Q, d) для нерандо­мизированных функций решения d Î D не имеет седловой точки.

Применяя метод линейного программирования и учитывая, что при оптимальном решении ограничения записываются как равенства, получаем из табл. 8.8 при ненулевых значениях h1 и h3 систему уравнений, которая включает цену игры v:

В результате решения этой системы уравнений получим:

Вывод. Минимаксная стратегия, еще более осторожная, чем оптимальная байесовская, для сельскохозяйственного предприя­тия заключается в использовании стратегий d1 и d3 с вероятно­стью соответственно 0,04 и 0,96.

Как это применять на практике?

Если весной наблюдается х1 (большое количество осадков), то осуществляется случайный выбор с вероятностями 0,04 и 0,96 одного из решений: а1 или а2. При наблюдении х2 (малое коли­чество осадков весной) принимается решение a1 о посадке кар­тофеля на влажных участках А1.

8.3. СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ПАРТИИ ГОТОВЫХ ИЗДЕЛИЙ И ВЕРОЯТНОСТЬ ПЕРЕБОЕВ ПРОИЗВОДСТВА

На основе статистических планов приемки продукции всегда должно быть известно, сколько изделий следует случайным об­разом отобрать для статистического контроля и при каких усло­виях принимается решение о браковке или приемке партии.

Планов контроля имеется большое множество, однако благо­даря своей простоте часто применяется одноступенчатый стати­стический план премки k|n, где п - объем выборки; k - приемоч­ное число. Если из проверенных изделий число дефектных Z не будет превышать k, партия принимается. Значит, k - допустимое число дефектных в выборке из п изделий.

Представитель торгового предприятия при Z £ k считает партию хорошей и принимает ее на основе анализа выборки. Затем производитель покрывает стоимость каждого обнаружен­ного в переданной партии бракованного изделия путем замены, бесплатного ремонта или другим путем, означенным в договоре.

Если Z > k, то партия не принимается торговым предприяти­ем, а производитель осуществляет сплошную проверку партии и выявляет дефектные изделия.

Задача 8.4. Выбрать оптимальное критическое число k. Зна­чение k может быть определено при помощи статистической игры.

Введем обозначения:

W (WÎW), доля дефектных изделий, - состояние природы Q;

N - объем партии изделии;

W = [0,1] - интервал от 0 до 1 с включением границ этого интервала;

А = {а1, a2}- множество решении статистика, где а1, а2 - ре­шения о приемке и о браковке партии со сплошным ее контро­лем соответственно;

С1 - затраты на проверку одного изделия;

С2- сумма, уплачиваемая производителем за каждое обнару­женное дефектное изделие после приемки партии.

Функция потерь

где С1п - стоимость контроля выборочной совокупности изде­лии в процессе контроля;

C2(N–n)W - сумма, выплачиваемая производителем за изделия, ког­да они окажутся дефектными после приемки;

С1 n + С2(N–п) - затраты на сплошной контроль, если партия не была принята.

Итак, стратегическая игра будет иметь вид (W, A, L). Для оп­ределенности будем считать:

• торговая фирма оплачивает только исправные изделия, а дефектные заменяются исправными;

• при большой партии распределение вероятностей случай­ной переменной - числа дефектных изделий Z - подчиняется биномиальному закону. Функция вероятности зависит от действи­тельной доли бракованных изделий в принимаемой партии W:

контролер наблюдает число Z в выборке объема п;

d(Z) = а - статистическая нерандомизированная функция решения контролера. Контролер может принять одно из двух зна­чений: a1 (принять) или a2 (не принять партию).

Однако нам необходимо осуществить оптимальный выбор критического числа k, поэтому перейдем к статистической игре. В этой игре используем информацию о числе Z забракованных изделий в выборке объемом п; распределение Z зависит от со­стояния природы W - доли дефектных изделий.

Решение. Для состояния природы W и статистической не­рандомизированной функции решения d(Z), определяющей кри­тическое число k при контроле партии готовых изделий, можно в статистической игре (W, D, R) найти функцию платежей или функцию риска R(W, d):

Это выражение можно раскрыть, используя биномиальное распределение.

Далее в качестве целевой функции d(Z), определяющей опти­мальное критическое число k выберем байесовскую нерандоми­зированную функцию. Пусть процесс производства является отлаженным, тогда доля дефектных изделий в партии W будет иметь бета-распределение, заданное на интервале [0,1]. В зави­симости от принятых параметров р и q можно определить апри­орное распределение доли дефектных изделий W в принимае­мых партиях.

Таким образом, априорным распределением x состояний природы W принимается бета-распределение с функцией плот­ности

Известно, что существует связь между бета- и гамма-функ­циями:

Байесовский риск при этом распределении будет

Этот байесовский риск следует минимизировать относитель­но k. При известных размерах партии N, выборки п, затрат C1 и С2, параметров априорного бета-распределения р и q байесовс­кий риск будет только функцией k:

r(x, d) = f(k).

Теперь нужно найти такое натуральное k, чтобы удовлетво­рялись неравенства

f(k)£ f(k+1) и f(k)£ f(k–1)

Рассмотрим неравенство f(k)£ f(k+1), из которого следует, что f(k+1) – f(k) ³ 0.

Используя связи между бета- и гамма-распределениями

и формулу гамма-функции Г(n) = (n–1)! , где (n–1)! - факториал, получим f(k+1) – f(k) ³ 0, если С2(р + k + 1)/(р + q + п) – С1 £ 0.

Значит, (p+k+1) ³

(p+q+n) и неравенство f(k) £ f(k+ 1) выполняется при k ³
(p+q+n) - (p+1).

Обратимся к неравенству f(k–1) – f(k) ³ 0 и найдем значе­ние k, для которого оно выполняется. При этом необходимо пре­образовать байесовский риск r(x, d) = f(k), после чего получаем неравенство f(k–1) – f(k) ³ 0, которое выполняется, если С2 р + k)/(p + q + п) – C1 £ 0. Тогда (p + k) £

(p+q+n), т. е. при k£
(p+q+n) - p. В этом случае байесовский риск примет минимальное значение для такого натурального числа k, которое удовлетворяет двойному неравенству: