Смекни!
smekni.com

Прогнозирование национальной экономики (стр. 1 из 2)

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования


КОНТРОЛЬНАЯ РАБОТА

по дисциплине: ПРОГНЕЗИРОВАНИЕ НАЦИОНАЛЬНОЙ ЭКОНОМИКИ

Вариант 9

Исполнитель:

___________________________

(дата, подпись)

Преподаватель:

Екатеринбург

2010

Задание 1.

Имеются данные объема поступлений по налоговым платежам и другим доходам в бюджетную систему РФ по региону (млн. руб.)

Период Объем поступлений (млн. руб.)
Январь 2595,90
Февраль 2885,59
Март 3238,04
Апрель 1016,66
Май 4027,65
Июнь 3208,17
Июль 3721,02
Август 4283,87
Сентябрь 3587,29
Октябрь 4111,46
Ноябрь 4451,21
Декабрь 6757,75

1.Постройте прогноз объема поступлений по налоговым платежам и другим доходам в бюджетную систему РФ на январь-февраль следующего года, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.

1) Метод скользящих средних (разработка прогнозов):

Вычислим прогнозное среднее:

1) Определим величину интервала сглаживания, равную 3.

2) Рассчитаем скользящую среднюю для первых трех периодов:

mф = (Уя +Уф + Ум)/3 = 8719,53/3 = 2906,51 млн. руб.

Далее рассчитываем mдля следующих трех периодов:

mь= (Уфма) /3 = 2380,1 млн. руб.

Далее по аналогии рассчитываем mдля каждых трех рядом стоящих периодов и составляем таблицу для решения задачи.

mа = (Ум а май) )/3 = 2760,78 млн. руб.

mмай = (Уамай и) /3 = 2750,83 млн. руб.

mиюнь = (Умайииюль)/3 = 3652,28 млн. руб.

и так далее (вычисленные данные в таблице 1).

Таблица 1

Месяцы Уровеньобъема поступлений в бюджет РФ, млн. руб. Скользящая средняя m Расчет средней относительной ошибки/Уф –Урф*100
январь 2595,90 - -
февраль 2885,59 2906,51 12
март 3238,04 2380,1 17,52
апрель 1016,66 2760,78 14,74
май 4027,65 2750,83 72,87
июнь 3208,17 3652,28 9,3
июль 3721,02 3737,69 13,84
август 4283,87 3864,06 0,5
сентябрь 3587,29 3994,21 9,8
октябрь 4111,46 4049,99 11.34
ноябрь 4451,21 5106,81

1,5

декабрь 6757,75 - -
Итого 43884,61 - 163,41
прогноз
январь 5875,66
февраль 5988,9

Вычислив скользящую среднюю для всех периодов, построим прогноз на январь, применяя формулу: Уt+1 = mt-1 + 1/n(Уе – Уе-1), если n =3.

Уянварь = 5106,81 + 1/3(6757,75 – 4451,21) = 5875,66;

m= (4451,21 + 6757,75 + 5875,66)/3 = 694,87

Построим прогноз на февраль:

Уфеврарь = (5694,87 + 1/3(5875,66 – 6757,75) = 5988,9

( Результаты заносим в таблицу).

Рассчитываем среднюю относительную ошибку:

έ=

= 163,41/10 = 16,341.

2) Прогнозирование на основе метода экспоненциального сглаживания

От величины αбудет зависеть, как быстро снижается вес влияния предшествующих наблюдений. Чем больше α, тем меньше сказывается влияние предшествующих лет. В данном случае мы используем большую величину α,( намного превышающую 1), что приведет к учету при прогнозе в основном влияния последних наблюдений и из-за этого прогноз может быть неточным.

Точного метода для выбора оптимальной величины параметра сглаживания αнет. При этом αвычисляется по формуле:

, (3)

где n– число наблюдений, входящих в интервал сглаживания.

Задача выбора Uо (экспоненциально взвешенного среднего начального) решается следующими путями:

1) если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической, и Uо равен этой средней арифметической;

2) если таких сведений нет, то в качестве Uо используют исходное первое значение базы прогноза Y1.

Также можно воспользоваться экспертными оценками.

Метод экспоненциального сглаживания в данном случае практически не «срабатывает». Это обусловлено тем, что рассматриваемый экономический временной ряд слишком короткий (11 наблюдений). Т.е. прогноз сделать невозможно.

Ut= (U1 +U2 +…+Un) /n = 43884,64/12= 3657,1; Uо = 2595,90;

а = 2/ (12+1) = 0,15;

Расчетная таблица 2

Месяцы Объем поступлений в бюджет РФ, млн. руб.

Экспоненциально

взвешенная средняя, Ut

Расчет средней относительной ошибки
1 способ 2 способ 1 способ 2 способ
Январь 2595,90 1478,4 2360 1,2 0,2
Февраль 2885,59 1628 2359 0,1 0,4
Март 3238,04 1751 2305 0,1 0,1
Апрель 1016,66 1800,3 2201 1,7 0,4
Май 4027,65 1782 2080 0,1 1,3
Июнь 3208,17 1732,2 1991 0,1 1,2
Июль 3721,02 1702,4 1863 2,6 0.1
Август 4283,87 1623,1 1735 0,1 0,8
Сентябрь 3587,29 1536,4 1594 0,05 2,4
Октябрь 4111,46 1429 1470 0,2 0,5
Ноябрь 4451,21 1333,12 1331
Декабрь 6757,75
Итого 43884,61 17534,82 21289 5,25 7,5
Прогноз
Январь
Февраль

1 способ: Uя = 2595,9*0,15 + (1-0,15) * 3657,1 = 3497,92;

Uф = 2885,59 * 0,15 + (1-0,15)*3497,92 = 3406,07;

Uм = 3238,04*0,15 + (1-0,15)*3406,07 = 3380,87;

Средняя относительная ошибка: Э = 5,25/11 =0,48 или 48%;

Э = 7,5/11 = 0,68 или 68%.

3) Разработка прогнозов методом наименьших квадратов

В данном случае «интервалы времени» между фактическими значениями и расчетными - равны месяцу, а прогноз более точен, если он построен на основе уравнения регрессии. Теоретический анализ сущности изучаемого явления, изменение которого отображается временным рядом, служит основой для выбора кривой. В данном случае – это прямая линия (т.е. «почти» прямо пропорциональная зависимость).

Тип кривой (зависимости от времени) - прямая линия.

Для решения используем следующую таблицу

Месяцы

Уровень

безработицы, %

Условное обозначение времени, Х Уф Х**2 Ур Расчет средней относительной ошибки /Уфрф*100
январь 2595,90 1 2595,90 1 2116,28 0,19
февраль 2885,59 2 5771,18 2 2396,42 0,17
март 3238,04 3 9714,12 9 2676,56 0,17
апрель 1016,66 4 4066,64 16 2956,7 1,9
май 4027,65 5 20138,25 25 3236,84 0,2
июнь 3208,17 6 19249,02 36 3516,98 0,1
июль 3721,02 7 26047,14 49 3797,12 0,02
август 4283,87 8 34270,96 64 4077,26 0,05
сентябрь 3587,29 9 32285,61 81 4357,4 0,22
октябрь 4111,46 10 41114,6 100 4637,54 0,13
ноябрь 4451,21 11 48963,31 121 4917,68 0,11
декабрь 6757,75 12 81093 144 5197,82 0,23
Итого 43884,61 78 325309,73 650 43884,46 3,49
Прогноз
январь 5477,96
февраль 5758,1

Применим следующую рабочую формулу метода наименьших квадратов:

у t+1 = а*Х + b, (4)

гдеt + 1 – прогнозный период;

yt+1 – прогнозируемый показатель;

a и b- коэффициенты;

Х - условное обозначение времени.

Расчет коэффициентов a иbосуществляется по следующим формулам:


где, Уi– фактические значения ряда динамики;n– число уровней временного ряда;

а= [325309,73 – 78* 43884,61/12] / [ 650 – 782/12] = 280,14



Сглаживание временных рядов методом наименьших квадратов служит

для отражения закономерности развития изучаемого явления.

в = 43884,61 /12 + 280,14*78/12 = 1836,14

Тип кривой (зависимости от времени) - прямая линия.

У = ах+в; У=2532-175,6Х

рассчитаем среднюю относительную ошибку

Э=3,49/12 = 0,29.

2. Постройте график фактического и расчетных показателей.

1 2 3 4 5 6 7 8 9 10 11 12 месяцы

Прогноз численность безработных всеми рассмотренными методами: предполагает тенденцию повышения уровня по объему поступлений наловых платежей и других доходов в бюджет РФ на январь-февраль следующего года примерно 5875,66 млн. руб. и 5988,9 млн. руб. соответственно по методу скользящей средней (который является более точным из всех рассмотренных методов); по методу экспоненциального прогнозов нет в январе-феврале следующего года, так как метод экспоненциального сглаживания нередко не «срабатывает» при изучении экономических временных рядов и прогнозировании экономических процессов, т. е. является в данном случае неточным, повышение уровня объемов поступлений подтверждается и графически – по методу наименьших квадратов (по графику уровень безработных в январе-феврале следующего года в регионе постепенно увеличивается).