Смекни!
smekni.com

Модели выбора оптимального портфеля ценных бумаг (стр. 3 из 7)

Для портфелей А и G данные вычисления опять будут тривиальными, так как инвестор приобретает акции только одной компании. Таким образом, стандартное отклонение будет составлять 20 и 40% соответственно.

Для портфелей В, С, D, Е и F применение уравнения показывает, что стан­дартное отклонение зависит от значения ковариации между двумя ценными бумагами. Этот ковариационный член равняется корреляции между двумя ценными бумагами, умноженной на произведение их стандартных отклонений:

Полагая i = 1 и j = 2, получим:

Рассмотрим вначале портфель D. Значение стандартного отклонения данного портфеля будет лежать в интервале между 10 и 30%, его точное значение зависит от величины коэф­фициента корреляции.

Минимальным значени­ем коэффициента корреляции является -1, отсюда можно увидеть, что нижняя грани­ца величины

будет такова:

= [500 + 400 х (-1)]1/2 = [500 - 400]1/2 = [100]1/2 = 10%.

Аналогично

будет максимальным, когда коэффициент корреляции будет максимальным, т.е. равным 1. Таким образом, верхняя граница будет такова:

= [500 + (400 х 1)]'/2= [500 + 400]1/2 = [900]

2 = 30%.

В общем случае для любого заданного набора весов

и Х2 нижние и верхние границы будут достигаться при равенстве коэффициента корреляции величинам —1 и 1 соответственно. Подобный анализ других портфелей пока­зывает, что их верхние и нижние границы равняются следующим значениям:

Стандартное отклонение портфеля

Портфель Нижняя граница Верхняя граница
А 20,00% 20,00%
В 10,00 23,33
С 0,00 26,67
D 10,00 30,00
Е 20,00 33,33
F 30,00 36,67
G 40,00 40,00

Все верхние пограничные значения лежат на прямой ли­нии, соединяющей точки А и G. Это означает, что любой портфель, составленный из этих двух бумаг, не может иметь стандартное отклонение, соответствующее точке, лежащей правее прямой линии, соединяющей эти две ценные бумаги. Вместо этого значение стандартного отклонения должно лежать на этой прямой линии или левее нее. Это означает желательность диверсификации портфеля. А именно, диверсификация ведет к уменьшению риска, так как стандартное отклонение портфеля будет в общем случае меньше, чем средневзвешенное стандартное отклонение бумаг, входящих в портфель.

Все нижние пограничные значения лежат на одном из двух отрезков, идущих из точки А до точки на вертикальной оси, соответ­ствующей значению в 8,30%, а оттуда — до точки G. Это означает, что любой портфель, составленный из данных ценных бумаг, не может иметь стандартное отклонение, изо­бражаемое точкой, лежащей левее любого из этих двух отрезков линии. Например, портфель В должен лежать на горизонтальной линии, проходящей через вертикальную ось в точке 6,70%, но ограниченную значениями в 10 и 23,33%.

Любой портфель, состоящий из этих двух цен­ных бумаг, лежит в пределах границ треугольника, изображенного на рис.5. Его фактическое местоположение зависит от значения коэффициента корреляции между этими двумя ценными бумагами.

Фактическое местоположение портфелей

Если корреляция равняется нулю, то используя соответствующие значения весов Х1и Х2, стандартное отклонение портфе­лей В, С, D, Е и Fможно вычислить следующим образом:

= [(400 х 0,832) + (1600 х 0,172)]1/2 = 17,94%

[(400 х 0,672) + (1600 х 0,332)]'/2 = 18,81%

= [(400 х 0,502) + (1600 х 0,502)]'/2 = 22,36%

= [(400 х 0,332) + (1600 х О.б?2)]1/2 = 27,60%

= [(400 х 0,172) + (1600 х 0,832)]'/2 = 33,37%.

Рисунок 6 показывает местоположение данных портфелей вместе с верхними и нижними пограничными значениями, которые были представлены на рис. 5. Эти портфели, так же как и все остальные возможные портфели, со­стоящие из акций ArkShippingи GoldJewelry, лежат на изогнутой линии, наклоненной влево. Хотя это и не показано здесь, если корреляция будет меньше нуля, то данная линия сильнее изогнется влево. Если корреляция будет больше нуля, она не изогнется так сильно влево. Важно отметить, что, пока корреляция остается больше —1 и меньше 1, линия, представляющая множество портфелей, состоящих из различных комбинаций двух ценных бумаг, будет иметь некоторую степень кривизны влево. Кроме того, ее верхняя левая часть будет вогнутой.

Аналогичный анализ может быть проведен в ситуации, когда рассматриваются больше чем две ценные бумаги. После проведения анализа, можно сделать заключение о том, что, пока корреляция остается меньше 1 и больше — 1, верхняя левая часть кри­вой должна быть вогнута, как это было в случае двух ценных бумаг. Таким образом, в общем случае эффективное множество будет вогнутым.

рис. 6. Портфели, являющиеся комбинацией ценных бумаг А иG

Невозможность существования «впадин» на эффективном множестве

Предыдущий пример показал, что происходит при формировании портфеля из акций двух компаний (Ark Shipping и Gold Jewelry). Важно отметить, что при формировании портфеля из двух других портфелей действуют те же принципы. Таким образом, точка А на рис. 1.6 может представлять собой портфель с ожидаемой доходностью 5% и стандарт­ным отклонением 20%, а точка С может представлять другой портфель ценных бумаг с ожидаемой доходностью 15% и стандартным отклонением 40%. Комбинируя эти два портфеля, можно создать третий, ожидаемая доходность и стандартное отклонение которого будут зависеть от долей, инвестированных в А и G. Если предположить, что корреляция между двумя портфелями равна нулю, то третий портфель будет распола­гаться на указанной изогнутой линии, соединяющей А и G.

Теперь, исходя из данных фактов, можно показать, что эффективное множество вогнуто. Покажем, что оно не может иметь никакую другую форму. Рассмотрим эффек­тивное множество, изображенное на рис. 7. Заметим, что на нем есть «впадина» меж­ду точками U и V, т.е. участок эффективного множества между U и V является вогну­тым. Может ли данное множество на самом деле быть эффективным? Нет, так как инвестор может вложить часть своих фондов в портфель, которому соответствует точка U, а оставшуюся часть фондов в портфель, которому соответствует точка V. В результате мы получим портфель, представляющий собой комбинацию портфелей U и V, который должен располагаться на рисунке левее рассматриваемого эффективного множества. Таким образом, новый портфель будет «более эффективным», чем порт­фель с такой же ожидаемой доходностью, расположенной на рассматриваемом эффективном множестве между точками U и V.

рис. 7. «Впадина» на эффективном множестве

рис. 8. Удаление «впадины» на эффективном множестве

Для примера проанализируем портфель из рассматриваемого эффективного мно­жества, лежащий на середине линии между точками Uи V; на рис. 8 данная точка отмечена буквой W. Если это действительно эффективный портфель, то создать порт­фель с такой же ожидаемой доходностью, как у W, но с меньшим стандартным откло­нением невозможно. Однако если инвестор вложит половину своих фондов в U, а вто­рую половину в V, то он создаст портфель, более эффективный, чем портфель W, так как он будет иметь такую же ожидаемую доходность, но меньшее стандартное отклоне­ние. Почему он будет иметь меньшее стандартное отклонение? Вспомним, что если корреляция между UuVравняется 1, то портфель должен лежать на прямой линии, соединяющейUuV, и, таким образом, будет иметь меньшее стандартное отклонение, чем W. На рис. 8 данная точка обозначена, как Z. Так как фактически корреляция меньше или равна +1, то W будет иметь такое же или меньшее стандартное отклоне­ние, как и Z. Это означает, что рассматриваемое эффективное множество ошибочно по построению, так как легко найти «более эффективный» портфель в области, где оно не является вогнутым.

1.3. Рыночная модель

Предположим, что доходность обыкновенной акции за данный период времени (на­пример месяц) связана с доходностью за данный период акции на рыночный индекс, такой, например, как широко известный S&P5005. В этом случае с ростом рыночного индекса, вероятно, будет расти и цена акции, а с падением рыночного индекса, веро­ятно, будет падать и цена акции. Один из путей отражения данной взаимосвязи носит название рыночная модель (marketmodel):

где

-доходность ценой бумаги i за данный период;