«Наиболее разумные» стратегии в игре называются решениями этой игры. Основой проблематики теории игр как математической дисциплины, является изучение связей между условиями игры и ее решениями. Основными вопросами в каждой игре являются следующие: «Что такое решение данной игры?», «Существуют ли решения данной игры?», «Каково решение данной игры и как его найти?». Удовлетворительное понятие решения было выработано для важного класса игр с числом игроков не более двух. Для игр более общего типа используется ряд критериев, позволяющих получать «оптимальные решения», удовлетворяющие некоторым интуитивно правдоподобным требованиям; однако в настоящее время ни одно из таких решений нельзя считать вполне удовлетворительными.
5. Теория массового обслуживания
Массового обслуживания теория, математическая дисциплина, изучающая системы, предназначенные для обслуживания массового потока требований случайного характера (случайными могут быть как моменты появления требований, так и затраты времени на их обслуживание). Типичным примером объектов М. о. т. могут служить автоматические телефонные станции, на которые случайным образом поступают «требования» — вызовы абонентов, а «обслуживание» состоит в соединении абонентов с другими абонентами, поддержании связи во время разговора и т. д. Целью развиваемых в М. о. т. методов является, в конечном счёте, отыскание разумной организации обслуживания, обеспечивающей заданное его качество. С этой точки зрения М. о. т. рассматривают как часть операций исследования.
М. о. т. широко использует аппарат теории вероятностей и (в меньшей степени) математической статистики. Задачи М. о. т., сформулированные математически, обычно сводятся к изучению специального типа случайных процессов. Исходя из заданных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания (наличие отказов или очередей и т. п., см. также Очередей теория), М. о. т. определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания, среднее время простоя линий связи и т. д.). В ряде более простых случаев это определение возможно аналитическими методами, в более сложных случаях приходится прибегать к моделированию соответствующих случайных процессов по Монте-Карло методу.
Становление М. о. т. было вызвано интересом к математическим задачам, возникающим в организации телефонных сетей, датского инженера А. К. Эрланга, первые публикации которого относятся к 20-м годам 20 века. М. о. т. получила дальнейшее развитие в 40—50-х годах в работах К. Пальма (Швеция), Ф. Поллачека (Франция), А. Я. Хинчина (СССР). Последнему принадлежит сам термин «М. о. т.». Эти работы были продолжены советским математиком Б. В. Гнеденко и другими. Развитие М. о. т. в значительной мере стимулируется расширением круга её применений. Являясь формально частью теории случайных процессов, М. о. т. выделилась в самостоятельную область исследований со своим кругом задач и методов их решения и в свою очередь стимулирует развитие теории случайных процессов.
6. Модель Уилсона
Математические модели управления запасами (УЗ) позволяют найти оптимальный уровень запасов некоторого товара, минимизирующий суммарные затраты на покупку, оформление и доставку заказа, хранение товара, а также убытки от его дефицита. Модель Уилсона является простейшей моделью УЗ и описывает ситуацию закупки продукции у внешнего поставщика, которая характеризуется следующими допущениями:
· интенсивность потребления является априорно известной и постоянной величиной;
· заказ доставляется со склада, на котором хранится ранее произведенный товар;
· время поставки заказа является известной и постоянной величиной;
· каждый заказ поставляется в виде одной партии;
· затраты на осуществление заказа не зависят от размера заказа;
· затраты на хранение запаса пропорциональны его размеру;
· отсутствие запаса (дефицит) является недопустимым.
Входные параметры модели Уилсона
1) – интенсивность (скорость) потребления запаса, [ед.тов./ед.t];
2) s – затраты на хранение запаса, [ ];
3) K – затраты на осуществление заказа, включающие оформление и доставку заказа, [руб.];
4) – время доставки заказа, [ед.t].
Выходные параметры модели Уилсона
1) Q – размер заказа, [ед.тов.];
2) L – общие затраты на управление запасами в единицу времени, [руб./ед.t];
3) – период поставки, т.е. время между подачами заказа или между поставками, [ед.t];
4) – точка заказа, т.е.размер запаса на складе, при котором надо подавать заказ на доставку очередной партии, [ед.тов.].
Циклы изменения уровня запаса в модели Уилсона графически представлены на рис.11.1. Максимальное количество продукции, которая находится в запасе, совпадает с размером заказа Q.
Рис.11.1. График циклов изменения запасов в модели Уилсона
(формула Уилсона), | (11.1) |
где – оптимальный размер заказа в модели Уилсона;
;
;
.