Смекни!
smekni.com

Вычисление стаистических показателей (стр. 1 из 4)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

КАФЕДРА: Бухгалтерского учета

КОНТРОЛЬНАЯ РАБОТА

ПО КУРСУ «СТАТИСТИКА»

2007

ЗАДАЧА 1.

Имеются следующие данные о рабочих одного из участников механического цеха:

Таблица 1.

Рабочий Возраст, лет МесячнаяЗ/П, грн. Рабочий Возраст, лет МесячнаяЗ/П, грн.
1 25 180,00 11 18 100,00
2 24 210,00 12 37 280,00
3 46 390,00 13 25 190,00
4 45 320,00 14 30 220,00
5 42 260,00 15 26 210,00
6 50 310,00 16 36 300,00
7 29 240,00 17 40 330,00
8 36 290,00 18 28 240,00
9 54 390,00 19 35 280,00
10 29 250,00 20 25 280,00

Для выявления зависимости между возрастом рабочих и оплатой их труда произведите их группировку по возрасту, образовав пять групп с равными интервалами.

По каждой группе и совокупности рабочих в целом подсчитайте:

1. Число рабочих;

2. Средний возраст;

3. Среднюю заработную плату;

Результаты представьте в таблице. Проанализируйте показатели и сделайте краткие выводы.

Теоретическое обоснование

Выполнение задания начинают с группирования совокупности данных для этого определяют количество групп с равными интервалами и рассчитывают величины интервала.

Величина интервала:

d = (xmaxxmin) / n,

Где

Хmax, Xmin – соответственно максимум и минимум значения сгруппированного признака;

n– число групп.

Границы вариант (групп) определяются путем прибавления минимального значения и величин интервала к минимальному признаку, т.е.

[xmin + (xmin + d)],

Где

Xmin – нижняя граница инт6ервала (Xmin+d) – верхняя граница интервала.

Для следующей варианты (Xmin+d) становятся нижней границей интервала, а верхняя граница на d – больше нижней и т.д. Образовав группы с равными интервалами находят частоту (вес) каждой группы (вариант) т.е. подсчитывают число единиц совокупности входящих в каждую группу при этом необходимо задаться условием: если знание признака у единицы больше совокупности верхней границе интервала то это единица войдет в следующий интервал, т.е. чтобы Xi вошло в соответствующую группу ее значение должно быть в пределах

xmin < xi < (xmin + d)

Для расчета средней и показателей вариации определяют середину интервала (Xi), которая равна полу сумме его нижней и верхней границ.

Xi=[Xmin + (Xmin + d)]/2

Расчет средней и показателей вариации по данным задачи требует применения арифметической средней, так как данные представлены в виде вариант и частот. Вес каждой варианты различен, поэтому расчет производят по средней арифметической взвешенной.

xi = Σxifi / Σfi,

Где Xi– средняя арифметическая.

Xi – значение варианты определяемого признака (средина интервала).

fi – частота (вес) варианты.

Чтобы вычислить среднюю вначале следует взвесить варианты (перемножить варианты на их частоты (Xi*fi), затем найти сумму их произведений (SXi*fi), сумму частот (Sfi) и поделить сумму произведений вариант на частоты на сумму частот (1)).

РЕШЕНИЕ

1. Найдем минимальное и максимальное значение варианты данной совокупности:

Min = 18 лет;

Мах = 54 лет.

Определим размах вариации:

D = 54 – 18 = 36;

Тогда величина интервала составит:

d = (54 – 18) / 5 = 7 (лет).

2.Определим границы интервалов (групп) и их середины:


Таблица 2.

№ группы Границы интервала Середина интервала
1 18–25 21,5
2 25–32 28,5
3 32–39 35,5
4 39–46 42,5
5 46–54 49,5

3. Определим принадлежность каждого рабочего к определенному интервалу (произведем группировку)

В группу 1 (границы: 18 – 25) входят рабочие:

№11 возраст составляет 18 лет с заработной платой 100,00 грн

№2 (возраст = 24 года) с (з/п = 210,00 грн)

№1 (возраст = 25 лет) с (з/п = 180,00 грн)

№13 (возраст = 25 лет) с (з/п = 190,00 грн)

№20 (возраст = 25 лет) с (з/п = 280,00 грн)

Количество человек в 1‑ой группе – 5

В группу 2 (границы: 25 – 32) входят рабочие:

№15 (возраст = 26 лет)с (з/п = 210,00 грн)

№18 (возраст = 28 лет) с (з/п = 240,00 грн)

№7 (возраст = 29 лет) с (з/п = 240,00 грн)

№10 (возраст = 29 лет) с (з/п = 250,00 грн)

№14 (возраст = 30 лет) с (з/п = 220,00 грн)

Количество человек во 2‑ой группе – 5

В группу 3 (границы: 32 – 39) входят рабочие:

№19 (возраст = 35 лет)с (з/п = 280,00 грн)

№8 (возраст = 36 лет) с (з/п = 290,00 грн)

№16 (возраст = 36 лет) с (з/п = 300,00 грн)

№12 (возраст = 37 лет) с (з/п = 280,00 грн)

Количество человек в 3‑й группе – 4

В группу 4 (границы: 39 – 46) входят рабочие:

№17 (возраст = 40 лет)с (з/п = 330,00 грн)

№5 (возраст = 42 года) с (з/п = 260,00 грн)

№4 (возраст = 45 лет) с (з/п = 320,00 грн)

№3 (возраст = 46 лет) с (з/п = 390,00 грн)

Количество человек в 4‑й группе – 4

В группу 5 (границы: 46 – 54) входят рабочие:

№6 (возраст = 50 лет) с (з/п = 310,00 грн)

№9 (возраст = 54 года) с (з/п = 390,00 грн)

Количество человек в 5‑й группе – 2

4. Определим средний возраст работы по каждой группе и по совокупности рабочих в целом.

Группа 1 х1 = (18+24+25+25+25) / 5 = 23,4 (года);

Группа 2 х2 = (26+28+29+29+30) / 5 = 28,4 (года);

Группа 3 х3 = (35+36+36+37) / 4 = 36 (лет);

Группа 4 х4 = (40+42+45+46) / 4 = 43,25 (года);

Группа 5 х5 = (50 + 54) / 2 = 52 (года);

По совокупности в целом:

Х = (21,5 · 5 + 28,5 · 5 + 35,5 · 4 + 42,5 · 4 + 49,5 · 2) / 20 = 33,05 (года)

5. Определим среднюю заработную плату по каждой группе и по совокупности рабочих в целом.

Группа 1 х1 = (100+210+180+190+280) / 5 = 192,00 (грн);

Группа 2 х2 = (210+240+240+240+250+220) / 5 = 280,00 (грн);

Группа 3 х3 = (280+300+290+280) / 4 = 287,50 (грн);

Группа 4 х4 = (330+260+320+390) / 4 = 325,00 (грн);

Группа 5 х5 = (310+390) / 2 = 350,00 (грн);

По совокупности в целом:

Х = (192,00 · 5 + 280,00 · 5 + 287,50 · 4 + 325,00 · 4 + 350,00 · 2) / 20 = 236,50 (грн)


Таблица 3. Группировка рабочих по возрасту работы

№ группы Границы интервалов Показатели по каждой группе Показатели по совокупности в целом
Вес варианты Средний возраст работы Средняя заработная плата Средний возраст работы Средняя заработная плата
1 18–25 5 23,4 192,00
2 25–32 5 28,4 280,00
3 32–39 4 36 287,50 33,05 236,50
4 39–46 4 43,25 325,00
5 46–54 2 52 350,00

Выводы: На основании полученных результатов по группировке рабочих по возрасту и проведенных расчетов можно сделать следующие выводы:

– наибольшее количество рабочих имеют возраст в пределах 18 – 25 лет (в среднем 23,4 года) и 25 – 32 лет (в среднем 28,4 года), наименьшее количество рабочих имеют возраст в интервале 46 – 54 года (в среднем 52 года). Средний же возраст работников предприятия составляет 33,05 года.

– наибольшую среднюю заработную плату имеют рабочие входящие в пятую группу возрастных пределов 46 – 54 года (в среднем 350,00 грн), наименьшую среднюю заработную плату имеют рабочие входящие в первую группу возрастных пределов 18 – 25 лет (в среднем 192,00 грн). Средняя заработная плата работников предприятия составляет 236,50 грн.

ЗАДАЧА 2.

Имеются следующие данные о размерах затрат на гривну товарной продукции на предприятиях города.


Таблица 4.

Затраты на гривну товарной продукции Число предприятий Товарная продукция, млн. грн.
До 85 6 10
85–90 12 20
90–95 4 8
95–100 3 4
Итого 25 42

Вычислить:

1. Средний размер затрат на гривну товарной продукции;

2. Средний объем товарной продукции на одно предприятие.

Сделать выводы.

Теоретическое обоснование

Средней гармонической взвешенной называется величина обратная средней арифметической из обратных значений признака.

Использование средней гармонической объясняется тем, что исходной базой вычисления является величина равная произведению значения признака на его частоту. Принципиальное значение при выборе вида средней величине имеет построение логической формулы того показателя среднюю величину которого необходимо подсчитать.

РЕШЕНИЕ

Определяем средний размер затрат на гривну товарной продукции по формуле средней гармонической. Логической формулой для определения среднего размера затрат является:

средний размер затрат на гривну товарной продукции =
Общий объем товарной продукции по всем предприятиям
Середины интервалов сгруппированных затрат на гривну товарной продукции

х = [10 + 20 + 8 + 4] / [10 / 82,5 + 20 / 87,5 + 8 / 92,5 + 4 / 97,5] = 87,5