Смекни!
smekni.com

Статистические расчеты 2 (стр. 2 из 2)

Рассчитаем абсолютное и относительное изменение стоимости продукции за счет изменения цен:

Задача 8. Изменение средней годовой численности работников отрасли характеризуется следующими данными:

Годы 1980 1990 2000 2005 (прогноз)
Численность работников, тыс. чел. 153,2 226,1 315,9 340,5

Изобразите эти данные в виде графиков: а) прямоугольных (столбиковых и ленточных); б) квадратных. Какой из этих графиков наиболее наглядно изображает изменение численности работников в данной отрасли за 1980-2005 гг.? Сформулируйте выводы, следующие из графических изображений.

А) - Столбиковая:

- Ленточная:

б) Квадратная:

На мой взгляд, наиболее полно отражает изменение численности работников в данной области столбиковая диаграмма. В соответствии с данными графиков, можно сделать вывод, что на протяжении 1980 – 2005 гг. численность работников увеличилась в два раза и продолжает расти.

Задача 9. Хронометраж работы станочника дал следующие результаты:

Затраты времени на изготовление одной детали, мин. 20–21 21–22 22–23 23–24
Число изготовленных деталей 6 13 10 7

Определите среднюю трудоемкость изготовления детали и предельную ошибку этого показателя с вероятностью 0,954, учитывая, что хронометраж производится при массовом выпуске. Какие результаты получатся, если взять вероятность 0,997?

Решение:

Рассчитаем среднюю трудоёмкость изготовления детали:


Рассчитаем среднюю внутригрупповую дисперсию:

Рассчитаем среднюю ошибку выборочной средней при повторном отборе

где

– дисперсия выборочной совокупности; n – объем (число единиц) выборки.

Рассчитаем предельную ошибку выборки, при , t = 2 (для p=0,954):

Рассчитаем предельную ошибку выборки, при , t = 3 (для p=0,997):

Задача 10. Имеются следующие данные о продолжительности производственного стажа и среднем проценте выполнения норм выработки по 30 рабочим-сдельщикам цеха о продолжительности производственного стажа и среднем проценте выполнения норм выработки:

Группы рабочих по продолжительности стажа работы, лет Число рабочих, чел. Средний процент выполнения норм выработкиодним рабочим
До 5 8 100,5
5–10 10 104,0
10–15 8 106,0
15–20 2 107,0
20 и более 2 110,0

Определите:

1)средний процент выполнения норм выработки по цеху;

2) вид корреляционной зависимости между данными показателями;

3) параметры уравнения регрессии;

4) тесноту изучаемой связи.

Решение:

Рассчитаем средний процент выполнения норм выработки по цеху:

Определим вид корреляционной зависимости между данными показателями:

В качестве линии регрессии используем уравнение прямой:

,

где y – результативный (зависимый) признак; x – факторный (независимый) признак; a и b – параметры уравнения прямой.

Для определения параметров a и b по методу наименьших квадратов составляется система двух нормальных уравнений:

,

.

Решая эту систему уравнений, находим:

Для измерения тесноты данной связи используем коэффициент корреляции, исчисляемый по формуле: