Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 13 из 37)

С точки зрения экономической интерпретации задача иссле­дования параметрической устойчивости может быть рассмот­рена как изучение тех пределов колебания цен на продукцию управляемого предприятия (фирмы), при которых принятый план выпуска продукции продолжает оставаться оптимальным.

Также содержание проблемы устойчивости оптимального плана ЗЛП по отношению к вариациям целевой функции может быть проиллюстрировано с помощью первой геометрической интерпретации. На рис. 1.10 изображено множество допусти­мых плановD некоторой задачи ЛП. Как видно из рисунка, це­левая функция f (ее поведение отражает линия уровня, пока­занная жирным пунктиром) достигает экстремального значе­ния в точке х*, а изменению ее коэффициентов от с к с' или с" на рисунке соответствует поворот линии уровня относительно х*. Активным, т. е. обращающимся в равенство, ограничениям в точке х* соответствуют линии (1) и (2). До тех пор, пока при повороте, вызванном изменением вектора с, линия уровня целе­вой функции не выходит за пределы образуемого линиями огра­ничений конуса, х* остается оптимальным планом. Как показа­но на рис. 1.10, этот план не меняется при переходе от с к с', и, наоборот, при переходе от с к с" линия уровня целевой функции f(x)=c"x пересечет линию (2), что вызовет изменение опти­мального базисного плана, которым теперь станет точка

.

Используя условия оптимальности плана ЗЛП

нетрудно получить количественные оценки для пределов коле­баний коэффициентов целевой функции, при которых не проис­ходит изменение оптимального плана. Допустим, вариации под­вергся некоторый элемент сr : сr = сr +εr. Возможны два случая:

1. Столбец r не входит в оптимальный базис (r ÎN(q))). Тог­да для неизменности оптимального плана необходимо и доста­точно выполнение условия

Отсюда можно получить значение для допустимой вариации

2. Столбец r входит в оптимальный базис (r ÎN(q))). В этом случае для сохранения оптимальности текущего плана потре­буется выполнение для всех небазисных столбцов (jÏN(q)))условий

Следовательно, в этом случае допустимая вариация должна удовлетворять условиям

Приведенный пример исследования чувствительности оп­тимального плана по отношению к изменению параметров за­дачи является весьма простым. Очевидно, что существуют и более сложные задачи, в которых, например, исследуются совместные вариации параметров разных типов. Они состав­ляют предмет специального раздела исследования операций, получившего название параметрического программирова­ния. Заинтересованный читатель может получить дополни­тельную информацию по данному предмету в [1, 6].

1.7. ДВОЙСТВЕННЫЙ СИМПЛЕКС-МЕТОД

1.7.1. Основные идеи двойственного симплекс-метода.Непосредственное приложение теории двойственности к вы­числительным алгоритмам линейного программирования позво­лило разработать еще один метод решения ЗЛП, получивший название двойственного симплекс-метода, или метода по­следовательного уточнения оценок. Впервые он был предло­жен Лемке в 1954 г.

В процессе изложения идей, положенных в основу двойст­венного симплекс-метода, еще раз воспользуемся второй геометрической интерпретацией ЗЛП. Рассмотрим некоторую КЗЛП (1.48). На рис. 1.11 изображен конус К положительных линейных комбинаций расширенных векторов условий аj для случая m = 2, n = 6, а на рис. 1.12 — (для большей наглядно­сти) — поперечное сечение данного конуса некоторой плос­костьюL, проходящей параллельно оси аппликат.

С каждым планом и задачи, двойственной по отношению к (1.48), можно взаимно однозначно связать гиперплоскость, проходящую через начало координат и перпендикулярную век­тору (-1,и). Допустимые планы двойственной задачи (1.49)
должны удовлетворять условиям иА с, которые можно пере­писать в виде (1,и)А ≥ 0 . Последнее означает, что всякий рас­ширенный вектор условий аj лежит «ниже» плоскости, опреде­ляемой вектором (-1, и). Таким образом, любому допустимому плану двойственной задачи в рассматриваемом примере соот­ветствует некоторая плоскость, расположенная выше всех рас­ширенных векторов, а стало быть, и конуса К. На рис. 1.12, где изображено поперечное сечение, конусу К отвечает многогран­ник, а «гиперплоскостям двойственных планов» — пунктирные линии, являющиеся их следами.

По аналогии с интерпретацией решения прямой задачи про­цесс решения двойственной задачи может быть представлен как поиск такой гиперплоскости, которая лежит выше конуса К и пересекает прямую, проведенную через конец вектора b параллельно оси аппликат, в самой нижней точке.

Из геометрической иллюстрации видно, что плоскости, не соприкасающиеся с конусом К, заведомо не представляют инте­реса, так как для любой из них легко указать плоскость, у кото­рой искомая точка пересечения лежит ниже. Таким образом, процесс поиска экстремума сводится к последовательному пе­ребору плоскостей, касающихся «верхних» граней конуса, или, как еще говорят, опорных по отношению к конусу. Для слу­чая, изображенного на рис. 1.12, таковыми являются гиперплоскости π1,2, π2,3, π3,4 и π4,5. Как можно заметить, каждая из рассматриваемых гиперплоскостей натянута на некоторый ба­зисный набор расширенных векторов аj, что, собственно, и ис­пользовано для их обозначения (π1,2 ~ {а1, а2} и т. д.).

-В дальнейшем системуβ={aj1, aj2,...,ajm} из т линейно-не­зависимых столбцов матрицы условий прямой задачи А будем называть сопряженным базисом, или двойствен­но допустимым базисом, если всякий вектор и Î Rm, удовлетворяющий условиям, удовлетворяет также ус­ловиям иаj≥cj(jÎ1:n), т. е. является допустимым пла­ном двойственной задачи (1.49).

План двойственной задачи и, соответствующий сопряженно­му базису β={aj1, aj2,...,ajm}, называют опорным планом. Его «опорность» заключается в том, что в системе ограничений uаjcj (jÎ1:n), задающих область определения двойственной задачиD*, т неравенств с номерами jÎN(β) обращаются в ра­венства.

Следует обратить внимание на то, что не всем сопряжен­ным базисам соответствуют допустимые базисные планы пря­мой задачи. В частности, вектор b не может быть разложен с неотрицательными коэффициентами по базисам {а1, а2}, {а3 , а4 } или {а4, а5}. В связи с этим систему коэффициентов разложения вектора b по сопряженному базису называют псев­допланом. В то же время базис {а2, а3} является допустимым для прямой задачи, и, более того, из иллюстрации видно, что он, с одной стороны, определяет максимум прямой задачи (наивыс­шую точку пересечения прямой, проходящей через конец b, с конусом К), а с другой — минимум двойственной (низшую точ­ку пересечения этой прямой с лежащей над К опорной гипер­плоскостью):

Последний факт является не чем иным, как геометрической иллюстрацией утверждения теоремы 1.5.