Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 15 из 37)

и исходный сопряженный базис, образуемый векторами аn+1,аn+2,…., аn+m. При этом начальный псевдоплан равен

Таким образом, при решении задачи вида (1.66)-(1.68) двой­ственный симплекс-метод имеет несомненные преимущества по сравнению с прямым.

Другое важное направление использования двойственного симплекс-метода связано с поиском оптимальных планов в тех задачах, условия которых претерпели некоторые изменения после того, как они уже были решены с помощью стандартной симплекс-процедуры. Типичными примерами таких изменений являются:

- изменение компонент вектора ограничений b, что, допу­стим, может быть интерпретировано как корректиров­ка объемов доступных ресурсов в процессе управления экономическим объектом;

- добавление новых ограничений к системе условий задачи, что достаточно часто случается при совершенствова­нии используемой экономико-математической модели.

В первом случае, т. е. при изменении вектора b, достоинства двойственного симплекс-метода очевидны, так как ранее найден­ный оптимальный базис можно использовать в качестве исход­ного сопряженного базиса при продолжении решения. Второй случай более подробно будет рассмотрен в гл. 4 при рассмотре­нии методов решения целочисленных задач.

В заключение отметим, что в настоящем параграфе был рас­смотрен вариант двойственного алгоритма, соответствующий стандартному симплекс-методу. Нетрудно догадаться, что су­ществует и вариант, построенный на базе модифицированного симплекса (схемы, связанной с преобразованием обратных мат­риц), но, поскольку этот вопрос представляет интерес в основ­ном с точки зрения техники организации вычислений, мы на нем останавливаться не будем. При желании с глубоким и детальным описанием данной версии алгоритма можно ознако­миться в [1]. Отметим лишь, что она обладает теми же прин­ципиальными преимуществами, что и модифицированный симп­лекс-метод.

1.7.4. Пример решения ЗЛП двойственным симплекс-методом. Рассмотрим на конкретном, примере процесс реше­ния КЗЛП двойственным симплекс-методом. Для этого, опять-таки, вернемся к задаче (1.34)-(1.35), решенной в п. 1.4.3 и п. 1.5.2. Предположим, что произошли изменения в векторе ограничений b в результате которых


Содержание исходной симплекс-таблицы T(1)(за исключением столбца b(1))) будет идентично содержанию таблицы, полу­чающейся на последнем шаге алгоритма, рассмотренного в п. 1.4.3. Для вычисления значений b(1)) в данном случае мож­но воспользоваться обратной матрицей, полученной на послед­ней итерации в п. 1.5.2:

В результате имеем:

Как видно из таблицы Т(1), в столбце b(1)) содержатся отрицательные элементы b1(1)) = - 1/3<0), то есть базис β(1) ={
5,
1,
3} не является оптимальным, но в то же время легко убедиться, что он обладает свойствами сопряженного базиса. Отрицательный элемент в b(1)) является единствен­ным, поэтому номер столбца, выводимого из базиса, опреде­ляется однозначно — r =1 и N1(1))=5. Далее рассматриваем строку a1(1)) = (0, -1/6, 0, -1/6, 1). В ней имеются отри­цательные элементы. Вычисляем λ2 =42:(-(-1/6))=252, λ4 =38:(-(-1/6))=228. λ2> λ4, следовательно, номер столбца, вводимого в базис — l =4. Осуществляем преобразование иполучаем симплекс-таблицу T(2).

Поскольку b(2))>0, то достигнутый базис N(2))={4,1,3} является оптимальным. Из Т(2) можно выписать оптимальный план х* =(6, 0, 32/3, 2, 0) и соответствующее ему значение це­левой функцииf(x*)= 444.

КЛЮЧЕВЫЕ ПОНЯТИЯ

- Общая задача линейного программирования (ОЗЛП).

- Каноническая задача линейного программирования(КЗЛП).

- Допустимый план.

- Оптимальный план.

- Первая геометрическая интерпретация ЗЛП.

- Базисное решение ЗЛП.

- Вторая геометрическая интерпретация ЗЛП.

- Вырожденный и невырожденный план ЗЛП.

- Симплекс-метод — метод последовательного улучшенияплана.

- Критерий оптимальности допустимого базисного плана.

- Метод минимизации невязок.

- Модифицированный симплекс-метод — вычислительнаясхема, связанная с преобразованием обратных матриц.

- Двойственная задача линейного программирования.

- Симметричность отношения двойственности.

- Теоремы двойственности.

- Экономическая интерпретациядвойственных оценок.

- Параметрическая устойчивость решения ЗЛП.

- Двойственный симплекс-метод — метод последовательно­го уточнения оценок.

- Сопряженный (двойственно допустимый) базис.

- Опорный план и псевдоплан.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1.1. Сформулируйте задачу линейного программирования.

1.2. Дайте определение для следующих понятий: план, допус­тимый план, оптимальный план,

решение задачи.

1.3. Чем отличается общая задача линейного программирова­ния от канонической?

1.4. Всегда ли общую задачу линейного программирования можно привести к каноническому виду?

1.5. Дайте определения для следующих понятий: аффинное множество, гиперплоскость, базис.

1.6. Чем отличается выпуклый многогранник от многогранно­го выпуклого множества?

1.7. В чем отличие понятий «линейная оболочка» и «выпуклая оболочка»?

1.8. Любой ли конус является выпуклым множеством?

1.9. Какая точка выпуклого множества называется угловой?

1.10. В чем заключается первая геометрическая интерпрета­ция задачи линейного программирования?

1.11. В чем заключается вторая геометрическая интерпрета­ция задачи линейного программирования?

В чем ее отли­чие от первой?

1.12. Какой план называется базисным?

1.13. Как связаны базисные планы и угловые точки области оп­ределения задачи линейного

программирования?

1.14. Какой план задачи линейного программирования называ­ется вырожденным?

1.15. Как с точки зрения второй геометрической интерпрета­ции можно представить процесс поиска

оптимального плана в задаче линейного программирования?

1.16. Сформулируйте критерий оптимальности допустимого базисного плана, применяемый в

симплекс-методе.

1.17. Сформулируйте основные этапы стандартной итерации симплекс-метода.

1.18. Для чего применяется преобразование Жордана—Гаусса?

1.19. Какой элемент симплекс-таблицы называется ведущим?

1.20. При каких условиях делается вывод о неограниченности целевой функции в решаемой задаче?

Какая геометриче­ская интерпретация соответствует данному случаю?

1.21. Можно ли заранее точно определить количество итера­ций, которое потребуется для решения

задачи симплекс-методом? Можно ли найти верхнюю границу для данной величины?

1.22. Какая задача называется вырожденной? По каким призна­кам можно узнать, что текущий план

является вырожден­ным?

1.23. Какие проблемы возникают при решении вырожденных задач?

1.24. Какую экономическую интерпретацию имеет ситуация вырожденности?

1.25. В чем основная идея метода возмущений?

1.26. Для чего предназначен метод минимизации невязок?

1.27. Сформулируйте основные отличия модифицированного симплекс-метода по отношению к

стандартному.

1.28. Перечислите преимущества модифицированного симп­лекс-метода.

1.29. Будет ли отличаться количество итераций при решении одной и той же задачи при решении ее

стандартным и мо­дифицированным симплекс-методом?

1.30. Дайте определение двойственной задачи.

1.31. Какими основными свойствами обладает пара двойствен­ных задач?

1.32. В чем заключается экономическая интерпретация пере­менных двойственной задачи?

1.33. Какой смысл вкладывается в понятие «параметрическая устойчивость»?

1.34. Сформулируйте условия для допустимых изменений це­левой функции задачи, при которых ее

оптимальный план остается неизменным.

1.35. Перечислите основные идеи, на которых базируется алго­ритм двойственного симплекс-метода.

1.36. Дайте определение сопряженного базиса.

1.37. Что такое псевдоплан?

1.38. Сформулируйте критерий оптимальности, используемый в алгоритме двойственного симплекс-

метода.

1.39. По каким признакам можно определить, что множество допустимых планов задачи, решаемой

двойственным сим­плекс-методом, пусто?

1.40.В каких ситуациях могут быть реализованы преимуще­ства двойственного симплекс-метода?

ГЛАВА 2. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

2.1. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ

НЕЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

2.1.1. Постановка задачи. Как уже упоминалось во введе­нии, предположение о возможности описать зависимости меж­ду управляемыми переменными с помощью линейных функций далеко не всегда адекватно природе моделируемого объекта. Например, в рассмотренных в главе 1 моделях цена товара счи­тается независимой от количества произведенного продукта, однако в повседневной жизни мы постоянно сталкиваемся с тем, что она может зависеть от объема партии товара. Анало­гичные замечания могут быть сделаны и по поводу технологи­ческих ограничений: расход определенных видов сырья и ресур­сов происходит не линейно, а скачкообразно (в зависимости от объема производства). Попытки учесть эти факторы приводят к формулировке более общих и сложных оптимизационных за­дач. Изучение методов их решения составляет предмет научной области, получившей названия нелинейного программиро­вания.