3.1.2. Построение исходного допустимого плана в транспортной задаче. По аналогии с другими задачами линейного программирования решение транспортной задачи начинается с построения допустимого базисного плана. Наиболее простой способ его нахождения основывается на так называемом методе северо-западного угла. Суть метода состоит в последовательном распределении всех запасов, имеющихся в первом, втором и т. д. пунктах производства, по первому, второму и т. д. пунктам потребления. Каждый шаг распределения сводится к попытке полного исчерпания запасов в очередном пункте производства или к попытке полного, удовлетворения потребностей в очередном пункте потребления. На каждом шагеq величины текущих нераспределенных запасов обозначаются аi(q), а текущих неудовлетворенных потребностей — bj(q). Построение допустимого начального плана, согласно методу северо-западного угла, начинается с левого верхнего угла транспортной таблицы, при этом полагаем аi(0) =аi, bj(0) = bj. Для очередной клетки, расположенной в строкеi и столбце j, рассматриваются значения нераспределенного запаса в i-ом пункте производства и неудовлетворенной потребности j-ом пункте потребления, из них выбирается минимальное и назначается в качестве объема перевозки между данными пунктами: xi,j = min{аi(q), bj(q)}. После этого значения нераспределенного запаса и неудовлетворенной потребности в соответствующих пунктах уменьшаются на данную величину:
Очевидно, что на каждом шаге выполняется хотя бы одно из равенств: аi(q+1) =0 или bj(q+1) =0 . Если справедливо первое, то это означает, что весь запас i-го пункта производства исчерпан и необходимо перейти к распределению запаса в пункте производства i +1, т. е. переместиться к следующей клетке вниз по столбцу. Если же bj(q+1) = 0, то значит, полностью удовлетворена потребность для j-го пункта, после чего следует переход на клетку, расположенную справа по строке. Вновь выбранная клетка становится текущей, и для нее повторяются все перечисленные операции.
Основываясь на условии баланса запасов и потребностей (3.5), нетрудно доказать, что за конечное число шагов мы получим допустимый план. В силу того же условия число шагов алгоритма не может быть больше, чем m+n-1, поэтому всегда останутся свободными (нулевыми) mn-(m+n-1) клеток. Следовательно, полученный план является базисным. Не исключено, что на некотором промежуточном шаге текущий нераспределенный запас оказывается равным текущей неудовлетворенной потребности (аi(q) = bj(q)). В этом случае переход к следующей клетке происходит в диагональном направлении (одновременно меняются текущие пункты производства и потребления), а это означает «потерю» одной ненулевой компоненты в плане или, другими словами, вырожденность построенного плана.
Рассмотрим применение метода северо-западного угла на конкретном примере. Транспортная таблица 3.1 содержит условия некоторой задачи, а в табл. 3.2 показан процесс поиска допустимого плана, включая последовательное изменение объема нераспределенных запасов и неудовлетворенных потребностей. Стрелки отражают траекторию перехода по клеткам транспортной таблицы, а цифры, находящиеся за ее пределами, — текущие нераспределенные остатки после назначения объема для очередной клетки.
Особенностью допустимого плана,, построенного методом северо-западного угла, является то, что целевая функция на нем принимает значение, как правило, далекое от оптимального. Это происходит потому, что при его построении никак не учитываются значения сi,j. В связи с этим на практике для получения исходного плана используется другой способ — метод минимального элемента, в котором при распределении объемов перевозок в первую очередь занимаются клетки с наименьшими ценами.
3.1.3. Критерий оптимальности. Рассмотрим более подробно структуру матрицы транспортной задачи. Схематично она показана на рис. 3.2.
Из него видно, что матрица имеет размерность (m+n)хmn, состоит из нулей и единиц и распадается на две группы однотипных блоков. Первая (верхняя) соответствует ограничениям на
объемы вывоза из пунктов производства, а вторая — ограничениям на удовлетворение потребностей в пунктах производства.
Построим двойственную задачу. С учетом специфической структуры матрицы транспортной задачи вектор двойственных переменных будет иметь размерность m+n, причем его компоненты, соответствующие первой группе ограничений, обозначим через (-ui), i∊1: m, а второй — через vj , j∊1:n (рис. 3.2). Тогда двойственная задача будет иметь вид:
Переменные ui называют потенциалами пунктов производства, а vj — потенциалами пунктов потребления. Применяя доказанные в главе 1 теоремы двойственности (см. теорему1.7), можно получить критерий оптимальности для плана транспортной задачи:
-Для того, чтобы допустимый план транспортной задачи хi,j был оптимальным, необходимо и достаточно, чтобы нашлись такие потенциалы иi, vj, для которых
Данные условия имеют содержательную экономическую интерпретацию. Потенциалы ui, и vjможно рассматривать как цены на перевозимый груз в пунктах производства и потребления (это, кстати, объясняет то, зачем понадобилось обозначать соответствующую двойственную переменную через (-ui)). Тогда, согласно условию (3.8), для оптимальности плана перевозок требуется, чтобы на тех маршрутах, по которым действительно перевозится груз, его цена в пункте потребления возрастала ровно на цену его перевозки, а в соответствии с условием (3.9) в оптимальномплане цена груза в пункте потребления не может быть меньше его цены в пункте производства с учетом затрат на транспортировку.
3.1.4. Алгоритм метода потенциалов для транспортной задачи. Критерий (3.8)-(3.9) положен в основу одного из методов решений транспортной задачи, получившего название метода потенциалов. Впервые он был предложен в 1949г. Л. В. Канторовичем и М. К. Гавуриным. Позже на базе общих идей линейного программирования аналогичный метод был предложен Дж. Данцигом.
Точно так же как транспортная задача является частным случаем задачи ЛП, так и метод потенциалов, вообще говоря, может трактоваться как разновидность симплексных процедур. Он представляет собой итеративный процесс, на каждом шаге которого рассматривается некоторый текущий базисный план, проверяется его оптимальность, и при необходимости определяется переход к «лучшему» базисному плану.
Алгоритм начинается с выбора некоторого допустимого базисного плана (методы его построения были рассмотрены в п. 3.1.2). Если данный план не вырожденный, то он содержит m + n -1 ненулевых базисных клеток, и по нему можно так определить потенциалы ui и vj, чтобы для каждой базисной клетки (т. е. для той, в которой хi,j > 0) выполнялось условие
Поскольку система (3.10) содержит m+n-1 уравнение и m+n неизвестных, то один из потенциалов можно задать произвольно (например, приравнять vj или uiк нулю). После этого остальные неизвестные ui и vj определяются однозначно.
Рассмотрим процесс определения потенциалов текущего плана транспортной задачи на примере. В табл. 3.3 переписаны условия задачи из табл. 3.1 и ее допустимый базисный план, построенный методом северо-западного угла (см. табл. 3.2).
Потенциал первого пункта потребления принимаем равным нулю (v1=0). Теперь, зная его, мы можем определить потенциалы для всех пунктов производства, связанных с первым пунктом ненулевыми перевозками. В данном случае их два (это первый и второй пункты), получаем:
Имея u2 и учитывая, что во второй строке таблицы существуют еще ненулевые компоненты х2,2 и х2,3, можно определить v2 = u2 +c2,2 =-10+17=7 и v3 =u2 +c2,3 =-10+15=5, после чего появляется возможность рассчитать u3 =v3– c3,3 =5-25 =-20 и, наконец, v4 =u3+c3,4 =-20 +21=1. В результате получаем полную систему потенциалов, показанную в табл. 3.3.
Для свободных клеток транспортной таблицы вычисляются величины αi,j = vj-ui, называемые разностями потенциалов. В табл. 3.4 они выписаны для всех небазисных клеток под ценами.
Разность потенциалов αi,j можно трактовать как увеличение цены продукта при его перевозке из пункта i в пункт j. Согласно критерию оптимальности (3.8)-(3.9), если все αi,j ≤ сi,j, то план оптимален, в противном случае, если существует хотя бы одна разность потенциалов αi,j> сi,j, то он может быть улучшен. Процесс «улучшения» плана состоит в определении вводимой и выводимой клеток, в чем прослеживается содержательная аналогия с соответствующими пунктами симплекс-процедур.