Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 28 из 37)

1) Выбирается некоторая нецелочисленная компонента пла­на

k(q). Поскольку в оптимальном плане она должна быть це­лой, то можно наложить ограничения xk ≤[
k
(q)] и xk ≥[
k
(q)]+1. Таким образом,D(q) разбивается на подмножества

Графическая интерпретация такого разбиения множестваD(q) приведена на рис. 4.4.

2) Решаются задачи линейного программирования

Соответствующие максимальные значения целевой функции принимаются как ее оценки на этих множествах:

Если оптимальный план

для одной из решенных задач удов­летворяет условию

и содержит только целые компоненты, то, значит, найдено ре­шение основной задачи (4.2)-(4.3). В противном случае среди всех концевых подмножеств, полученных как на предыду­щих (Di(q)), так и на текущем (D1(q), D2(q)) этапе, выбирается об­ласть с наибольшей оценкой ξ(Di(q)). Она становится текущим рассматриваемым подмножеством (D(q+1)). Далее производится перенумерация концевых множеств и вычислительный процесс итеративно повторяется.

При решении задач (D1(q), f) и (D2(q), f) можно воспользовать­ся результатами решения предыдущей задачи (D(q),f). Рас­смотрим вариант организации вычислительного процесса на примере задачи (

1(q), f) (для (
2(q), f) он выглядит аналогично с точностью до знаков неравенств).

Предположим, что на последнем шаге решения задачи (D(q), f) был получен оптимальный базис β. Без ограничения общности можно считать, что он состоит из первых m столбцов матрицы задачи. Данное предположение делается исключитель­но для обеспечения наглядности дальнейшего изложения и оче­видно, что его выполнения можно всегда добиться за счет про­стой перенумерации векторов аj. По аналогии с предыдущим параграфом введем обозначения для элементов матрицы задачи (D(q), f) и ее вектора ограничений относительно базиса

:

Тогда система ограничений задачи (D(q), f) может быть пред­ставлена как

а получаемая на ее основе система ограничений задачи (

1(q), f) как

или

где хn+1 ≥ 0 — фиктивная переменная, которой соответствует нулевой коэффициент в целевой функции, добавляемая для пре­образования неравенства в строгое равенство.

Очевидно, что 1≤k≤m, т. к. небазисные компоненты опти­мального плана (m+1≤j≤n) равны нулю, т. е. являются заведо­мо целочисленными. Тогда с учетом сделанных предположений о виде базиса

можно записать:

Как видно из (4.39), в k-м столбце имеется всего два отлич­ных от нуля элемента: в k-й и (m+1)-й строках. Если вычесть из (m+1)-го уравненияk-e, то, учитывая, что [άk] – άk =-{άk}, по­лучим эквивалентную систему:

Проведенные преобразования системы ограниченийD1(q) по­зволили явно выделить сопряженный базис, образуемый столб­цами с номерами 1,..., m, n+1, и соответствующий ему псевдо­план (ά1, ..., άm, 0,....,0, -{άk}), т.е. для решения задачи (D1(q), f) может быть применен алгоритм двойственного симплекс-мето­да. Практически вычислительный процесс для данного этапа сводится к преобразованию к симплекс-таблицы, показанному на рис. 4.5.

Для случая задачи (D2(q), f) преобразование симплекс-табли­цы, получаемое на базе аналогичных рассуждений, приведено на рис. 4.6.

Очевидным недостатком алгоритма метода ветвей и границ при решении задач большой размерности является необходи­мость перебрать слишком большое количество вариантов пе­ред тем, как будет найден оптимальный план. Однако он отчасти может быть преодолен, если ограничиться поиском не опти­мального, а просто «хорошего» (близкого к оптимальному) пла­на. О степени такой близости и скорости приближения к экст­ремуму нетрудно судить по изменению значений оценок.

Подчеркнем, что приведенная реализация метода ветвей и границ является одной из многих. Помимо нее, например, очень популярна версия метода решения задачи коммивояжера, в которой для ветвления и построения оценок используют специфические свойства данной модели. При желании о ней мож­но прочесть в[1, 14].

КЛЮЧЕВЫЕ ПОНЯТИЯ

- Задачи с неделимостями.

- Экстремальные комбинаторные задачи.

- Задачи с разрывными целевыми функциями.

- Правильное отсечение.

- Метод Гомори.

- Методы ветвей и границ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

4.1. Какие основные проблемы возникают при решении дис­кретных задач?

4.2. Сформулируйте задачу о ранце.

4.3. Какие экономико-математические модели могут быть све­дены к задаче о коммивояжере?

4.4. Приведите пример моделей с разрывными целевыми функ­циями.

4.5. Какой принцип используется для построения правильно­го отсечения в методе Гомори?

4.6. Перечислите основные этапы, входящие в «большую» итерацию метода Гомори.

4.7. Какую роль играет алгоритм двойственного симплекс-ме­тода при решении целочисленной

линейной задачи мето­дом Гомори?

4.8. Перечислите принципиальные идеи, лежащие в основе ме­тодов ветвей и границ.

4.9. Как производится построение отсечения при решении це­лочисленной линейной задачи методом

ветвей и границ?

4.10. Опишите схему решения целочисленной задачи линейно­го программирования методом ветвей и

границ.

4.11. За счет каких преобразований удается построить сопря­женный базис при добавлении

отсекающего ограничения?

ГЛАВА 5. ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

5.1. ОБЩАЯ СХЕМА МЕТОДОВ

ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ

5.1.1. Основные идеи вычислительного метода динами­ческого программирования. Некоторые задачи математиче­ского программирования обладают специфическими особенно­стями, которые позволяют свести их решение к рассмотрению некоторого множества более простых «подзадач». В результа­те вопрос о глобальной оптимизации некоторой функции сводится к поэтапной оптимизации некоторых промежуточных целевых функций. В динамическом программировании* рас­сматриваются методы, позволяющие путем поэтапной (много­шаговой) оптимизации получить общий (результирующий) оп­тимум.

* Динамическое программирование как научное направление возник­ло и сформировалось в 1951-1953 гг. благодаря работам Р. Беллмана и его сотрудников.

Обычно методами динамического программирования опти­мизируют работу некоторых управляемых систем, эффект ко­торой оценивается аддитивной, или мультипликативной, целевой функцией. Аддитивной называется такая функция не­скольких переменных f(х1,x2,...,хn), значение которой вычис­ляется как сумма некоторых функцийfj, зависящих только от одной переменной хj:

Слагаемые аддитивной целевой функции соответствуют эффек­ту решений, принимаемых на отдельных этапах управляемого процесса. По аналогии, мультипликативная функция распа­дается на произведение положительных функций различных пе­ременных: