Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 3 из 37)

Ограничения на возможные значения хÎ Rmn имеют вид:

1. Ограничение на удовлетворение потребностей во всех пун­ктах потребления:

2. Ограничения на возможности вывоза запасов из всех пун­ктов производства:

3. Условия неотрицательности компонентов вектора плана:

х, хi,j ≥ 0,iÎl : m,jÎl : n. (15)

Существенной характеристикой описываемой модели яв­ляется соотношение параметров аiи bj. Если суммарный объем производства равен суммарному объему потребления, аименно,

то система называется сбалансированной. При выполнении условия сбалансированности разумно накладывать такие огра­ничения на суммарный ввоз и вывоз груза, при которых полно­стью вывозится весь груз и не остается неудовлетворенных потребностей, т. е. условия (13) и (14) приобретают форму ра­венств.

По аналогии с задачей производственного планирования предположим, что затраты на перевозку прямо пропорцио­нальны количеству перевозимого груза. Тогда суммарные за­траты на перевозку в системе примут вид:

Функция (16) и описанные выше ограничения, записанные в форме

задают транспортную модель. На ее основе может быть сформулирована задача минимизации суммарных затрат на пе­ревозки:

f(x)=cx → min, xÎD, (18)

которая в литературе получила название транспортной зада­чи в матричной постановке. Вообще говоря, транспортная задача является частным случаем задачи (11), но в силу ряда особенностей для ее решения применяются специфические ме­тоды, которые, помимо прочего, позволяют прийти к важным теоретическим обобщениям.

Общим для рассмотренных выше задач является то, что в них стоит проблема поиска наибольшего или наименьшего (оп­тимального) значения некоторой функции, отражающей цель управления системой, или, как еще говорят, целевой функции. Поиск оптимального значения осуществляется на некотором подмножестве допустимых значений переменных, описывающих состояние этой системы, именуемом множеством допустимых планов.

Пусть на некотором множествеD определена функцияf(x).Напомним, что точка х*, принадлежащая D (х*Î D), называет­ся точкой глобального максимума, если для любого xÎD выполняется неравенствоf(x) ≤ f(x*). В этом случае значение f(x*) называется глобальным максимумом функции. Точ­ка х̀́ называется точкой локального максимума, если су­ществует некоторая окрестность этой точки, в любой точке ко­торой значение функции меньше, чем в х́̀ (f(x) ≤ f(x́̀)). По аналогии, с точностью до знака неравенства, определяются глобальный и локальныйминимумы. Обобщающим понятием для максимума и минимума является таксой термин, как эк­стремум (оптимум).

Необходимо отметить, что далеко не всегда весь комплекс целей и задач, стоящий перед моделируемым объектом, может быть выражен в форме некоторой целевой функции. Более того, осознание и осмысление этой проблемы стало своего рода пере­ломным этапом в истории развития исследования операций как науки, положившим конец многим необоснованным ожидани­ям и одновременно давшим толчок к развитию новых направле­ний, связанных с методами многокритериальной оптимизации. Однако следует иметь в виду, что все они базируются на фундаменте методов однокритериальной оптимизации, без ясного понимания которых невозможна работа с более сложным мате­матическим аппаратом.

Как уже отмечалось выше, работа с данной книгой предпола­гает знакомство читателя с классическими методами поиска экст­ремума, основывающимися на аппарате дифференциального исчисления. Но непосредственное применение классических ме­тодов для оптимизации функций, зависящих от большого числа переменных, при наличии значительного количества ограниче­ний наталкивается на серьезные вычислительные трудности, что делает соответствующий аппарат неэффективным.

Мощным инструментом разрешения подобного рода задач стали специальные методы поиска экстремума, составляющие содержание раздела исследования операций, который называ­ется математическое программирование. В данном случае понятие программирование употребляется в смысле планиро­вание (в отличие от программирования для ЭВМ).

В свою очередь, в зависимости от вида решаемых задач, в ма­тематическом программировании выделяют такие области, как линейное, нелинейное, дискретное, динамическое, геомет­рическое, стохастическое программирование. Первые четыре раздела, а также их применение для решения экономических задач составили содержание последующих глав.

ГЛАВА 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

1.1. ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

1.1.1. Формы задачи линейного программирования.

В общем виде задача линейного программирования* (в дальней­шем ЗЛП) может быть сформулирована как задача нахождения наибольшего значения линейной функции

на некотором множествеD Ì Rn, где х ÎD удовлетворяют сис­теме ограничений

и, возможно, ограничениям

х1 ≥0,х2≥0,..., хj ≥0,...,хn≥0. (1.3)

* Напомним, что частные примеры, сводящиеся к задаче линейного программирования, были описаны во введении.

Не умаляя общности, можно считать, что в системе (1.2) пер­вые m ограничений являются неравенствами, а последующие —l-уравнениями. Очевидно, этого всегда можно добиться за счет простого переупорядочения ограничений. Относительно направ­ления знака неравенства будем предполагать, что левая часть меньше или равна правой. Добиться этого можно, умножив на (-1) обе части тех неравенств, которые имеют противопо­ложный знак. Ограничения (1.3), вообще говоря, могут быть рассмотрены как частный случай ограничений в форме нера­венств, но в силу особой структуры их обычно выделяют от­дельно и называют условиями неотрицательности (или три­виальными ограничениями).

Дополнительно следует заметить, что выбор типа искомого экстремума (максимума или минимума) также носит относитель­ный характер. Так, задача поиска максимума функции

эквивалентна задаче поиска минимума функции

Часто условия задачи (1.1)-(1.3), содержащей ограничения только типа неравенств, бывает удобно записывать в сокращен­ной матричной форме

f(x) = сх → max, Axb, х ≥ 0, (1.6)

где сих — векторы из пространстваRn,b— вектор из простран­стваRm, а А — матрица размерности mх n.

Задачу линейного программирования, записанную в форме (1.1)-(1.3), называют общей задачей линейного програм­мирования (ОЗЛП).

Если все ограничения в задаче линейного программирования являются уравнениями и на все переменные хj наложены усло­вия неотрицательности, то она называется задачей линейного программирования в канонической форме, или канонической задачей линейного программирования (КЗЛП). В матрич­ной форме КЗЛП можно записать в следующем виде:

Поскольку любая оптимизационная задача однозначно оп­ределяется целевой функцией f и областьюD, на которой отыс­кивается оптимум (максимум), будем обозначать эту задачу парой (D, f).

Условимся относительно терминологии, которая использу­ется в дальнейшем и является общепринятой в теории линейно­го программирования.

Планом ЗЛП называется всякий вектор х из пространства Rn.

Допустимым планом называется такой план ЗЛП, кото­рый удовлетворяет ограничениям (1.2)-(1.3), т. е. содержится в области D. Сама область D называется при этом областью допустимых планов. Оптимальным планомх* называется такой допустимый план, при котором целевая функция достигает оптимального (в нашем случае — максимального) значения, т. е. план, удовлетворяющий условию

max f(x) = f(x*).

Величина f* =f(х*) называется оптимальным значением целевой функции.

Решением задачи называется пара (х*, f*), состоящая из oптимального плана и оптимального значения целевой функции, а процесс решения заключается в отыскании множества всех решений ЗЛП.

1.1.2. Переход к канонической форме. Подавляющее боль­шинство известных методов решения задач линейного програм­мирования предназначены для канонических задач. Поэтому начальный этап решения всякой общей задачи линейного про­граммирования обычно связан с приведением ее к некоторой эквивалентной канонической задаче.