Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 33 из 37)

или, что то же самое,

В силу сделанных предположений все функции затрат fk (xk ,yk+1) являются вогнутыми (как суммы вогнутой и линей­ной функций). Данное свойство значительно упрощает процесс решения, так как для поиска минимума вогнутых функций fk (xk ,yk+1) достаточно рассмотреть только две крайние точки множества, на котором отыскивается минимум. С учетом вве­денного обозначения задачу (5.24)-(5.25) можно записать в виде:

при условиях

Рассмотрим процедуру решения (5.32)-(5.33). Так как ищет­ся минимум суммы вогнутых функций fk(xk ,yk+1), то решение будет достигаться на одной из крайних точек множества, опре­деляемого условиями (5.33). Общее число переменных xk и yk в системе (5.33) равно 2п. Однако, учитывая то, что в ней толь­ко п уравнений, в оптимальном плане будет не более п ненуле­вых компонент, причем для каждого периода k значения xk и yk не могут равняться нулю одновременно (в силу необходимостиудовлетворения спроса либо за счет заказа, либо за счет запа­са). Формально это утверждение можно представить в виде ус­ловия дополняющей нежесткости:

где

С точки зрения содержательной интерпретации условия (5.34)-(5.35) означают, что при оптимальном управлении за­каз поставщику на новую партию не должен поступать, если в начале периода имеется ненулевой запас, или размер заказа должен равняться величине спроса за целое число периодов. Отсюда следует, что запас на конец последнего периода должен равняться нулю: у*n+1=0. Последнее позволяет решать задачу в прямом направлении, применяя рекуррентное соотношение

где ξ = уk+1=хk+уk - dk .

Учитывая (5.34)-(5.35) и вогнутость fk(xk, ξ), заключаем, что минимум (5.36) достигается в одной из крайних точек xk =0 или xk = ξ + dk поэтому

тогда для предыдущего периода функция состояния может быть выражена как

на oснове чего в общем виде получаем модифицированную фор­му для рекуррентного соотношения

При дальнейших конкретизирующих предположениях о ви­де функций fk (xk , уk+1) можно получить еще более компактные формы для рекуррентных соотношений. Однако эти вопросы носят достаточно частный характер, и мы их рассматривать не будем. Отметим лишь, что приведенные в данном пункте преоб­разования неплохо иллюстрируют общие подходы, применяе­мые в динамическом программировании, а также те свойства задач, которые открывают возможности, для эффективного и плодотворного использования соответствующих методов.

КЛЮЧЕВЫЕ ПОНЯТИЯ

- Аддитивная и мультипликативная функция.

- Рекуррентное соотношения.

- Принцип оптимальности Беллмана.

- Отсутствие последействия.

- Задача о найме работников.

- Динамическая задача управления запасами.

КОНТРОЛЬНЫЕ ВОПРОСЫ

5.1. Для решения каких задач предназначен метод динамичес­кого программирования?

5.2. В чем заключена суть метода динамического программи­рования?

5.3. Каким условиям должна удовлетворять задача, чтобы для ее решения мог быть применен

алгоритм динамического программирования?

5.4. Какие трудности связаны с вычислительными алгоритма­ми динамического программирования?

5.5. Что определяет направление решения задачи в алгорит­мах динамического программирования?

5.6. Сформулируйте математическую модель для задачи о най­ме работников.

5.7. Выпишите основное рекуррентное соотношение, исполь­зуемое при решении задачи о найме

работников.

5.8. С какими особенностями задач управления запасами свя­зано применение при их решении

аппарата динамического программирования?

5.9. Какой вид имеет целевая функция в динамической задачеуправления запасами?

5.10. Выпишите основное рекуррентное соотношение, исполь­зуемое при решении динамической

задачи управления за­пасами.

ГЛАВА 6. КРАТКИЙ ОБЗОР

ДРУГИХ РАЗДЕЛОВ ИССЛЕДОВАНИЯ ОПЕРАЦИЙ

Данная глава занимает особое положение среди остальных. Ее цель — представить читателю предельно краткую характерис­тику так называемых дополнительных разделов исследования операций. Поясним несколько смысл слова «дополнительный». Дело в том, что существуют различные подходы к классифика­ции этих научных отраслей: иногда их считают составными час­тями исследования операций, а иногда рассматривают как само­стоятельные дисциплины. Обе точки зрения имеют право на существование, но даже если придерживаться второй, разделы, о которых пойдет речь в настоящей главе, можно трактовать как смежные области знания, аппарат которых применим для решения задач исследования операций. Еще раз подчеркнем, что каждый параграф настоящей главы лишь обзорно затраги­вает общие вопросы соответствующих тем, а полные учебные курсы по ним существенно превышают объем данной книги.

6.1. ТЕОРИЯ ИГР

6.1.1. Предмет теории игры. Задачи, рассмотренные в пре­дыдущих главах, формулировались для ситуаций индивидуально­го выбора оптимальных решений, т.е. для случаев, когда решение принимает отдельно взятый субъект, обладающий единственнойцелью.

Принципиально иная ситуация возникает при изучении процессов принятия решений несколькими субъектами, инте­ресы которых могут не совпадать. При этом возникают задачисо многими целевыми функциями (критериями). Область мате­матики, изучающая данные проблемы, получила название тео­рии игр. Задачи теории игр относятся к области принятия ре­шений в условиях неопределенности, а их специфика состоит в том, что, как правило, подразумевается неопределенность, воз­никающая в результате действий двух или более «разумных» противников, способных оптимизировать свое поведение за счет других. Среди типичных примеров такого поведения могут быть названы действия конкурирующих фирм на одном рынке или планирование военных операций.

Одним из основных вопросов в задачах с коллективным вы­бором решений является вопрос об определении оптималь­ности, т. е. вопрос, какие решения следует признавать наилуч­шими в ситуации оптимизации по нескольким критериям, отражающим различные интересы. Многие методы решения проблем теории игр основываются на сведении их к задачам ма­тематического программирования. На наиболее простых из них мы остановимся в настоящей главе.

Теория игр берет начало от работ Э. Бореля (1921 г.), а прин­ципиальным этапом в ее становлении как самостоятельного на­учного направления стала монография Дж. Неймана, вышед­шая в 1944 г. [25].

6.1.2. Терминология и классификация игр. Особенно­стью теории игр как научной дисциплины стала употребляемая в ней специфическая терминология. Термин «игра» применяется для обозначения совокупности правил и соглашений, которыми руководствуются субъекты, поведение которых мы изучаем. Каждый такой субъект k, гдеk∊l:K, или игрок, характеризует­ся наличием индивидуальной системы целевых установок и стра­тегийs1k,s2k, ..., smkk, т. е. возможных вариантов действий в игре.

Достаточно распространенный способ математического описания игры основан на задании функцийfk(s1i1 ,s2i2 , ..., skik , ..., sKik), каждая из которых определяет результат (платеж, выигрыш), получаемый k-м игроком в зависимости от набора стратегийS =(s1i1 ,s2i2 , ..., skik , ..., sKik), примененного всеми участ­никами игры. Функцииfk, k∊l:Kтакже называют функциямивыигрыша, или платежными функциями. В том случае, если для любыхS

игра называется игрой с нулевой суммой. Игру с двумя участ­никами и нулевой суммой называют антагонистической. Ан­тагонистические игры, т. е. игры, в которых выигрыш одного участника равен проигрышу другого, в силу относительно про­стой постановки задачи являются наиболее изученным разде­лом теории игр. Однако содержание теории игр, безусловно, не исчерпывается ими. В классификации игровых моделей вы­деляют игры с конечными и бесконечными наборами стратегий у игроков, выделяют игры по возможным количествам ходов у участников. Также игры делят на некооперативные и коопе­ративные, т. е. те, в которых функции выигрыша участников зависят от образуемых ими коалиций. Помимо этого игры мож­но различать по объему информации, имеющейся у игроков от­носительно прошлых ходов. В этой связи они делятся на игры с полной и неполной информацией. Заинтересованный читатель может обратиться к таким источникам, как [17, 23].