Многие модели управляемых систем основаны на аппарате дифференциальных уравнений как в обыкновенных, так и в частных производных. При исследовании систем с распределенными параметрами, в зависимости от вида используемых дифференциальных уравнений в частных производных, выделяют такие типы задач оптимального управления, как параболические, эллиптические или гиперболические.
Рассмотрим два простейших примера задач управления экономическими объектами.
Задача распределения ресурсов. Имеется т складов с номерамиi (i∊1:m), предназначенных для хранения однородного продукта. В дискретные моменты времениt∊0:(T-l) происходит его распределение между объектами-потребителями (клиентами) с номерами j, j∊1:n. Пополнение запаса в пунктах хранения продукта в t-й момент времени определяется величинамиait, i∊1:m, а потребности клиентов в нем равняются bjt, j∊1:n. Обозначим черезcti,j — затраты на доставку единицы продукта из i-го склада j-му потребителю в момент времениt.Также предполагается, что продукт, поступивший на склад в момент t, может быть использован, начиная со следующего момента (t+l). Для сформулированной модели ставится задача найти такой план распределения ресурсов {хti,j}Tmxn, который минимизирует суммарные расходы на доставку потребителям продукции со складов в течение полного периода функционирования системы.
Обозначив через хti,j количество продукта, поставляемое j-му клиенту с i-го склада в t-й момент времени, а через zti — общее количество продукта на i-м складе, описанную выше проблему можно представить как задачу нахождения таких совокупностей переменных
которые обращают в минимум функцию
при условиях
где объемы начальных запасов продукта на складах z0i =ži. предполагаются заданными.
Задачу (6.20)-(6.23) называют динамической транспортной задачей линейного программирования. С точки зрения приведенный выше терминологии независимые переменные хti,j представляют собой параметры управления системой, а зависящие от них переменные zti — совокупность параметров состояния системы в каждый момент времениt. Ограничения zti ≥ 0 гарантируют, что в любой момент времени с любого склада не может быть вывезен объем продукта, превышающий его фактическое количество, аограничения (6.21) задают правила изменения этого количества при переходе от одного периода к другому. Ограничения данного вида, которые задают условияна значения параметров состояния системы, принято называть фазовыми.
Отметим также, что условие (6.21) служит простейшим примером фазовых ограничений, поскольку связываются значения параметров состояния для двух смежных периодов t иt+l. В общем случае может устанавливаться зависимость для группы параметров, принадлежащих нескольким, возможно несмежным, этапам. Такая потребность может возникнуть, например, при учете в моделях фактора запаздывания поставок.
Простейшая динамическая модель макроэкономики. Представим экономику некоторого региона как совокупность п отраслей (j∊1:п), валовой продукт которых в денежном выражении на некоторый момент t может быть представлен в виде вектора zt=(zt1 , zt2 ,..., ztn), где t∊0:(Т-1). Обозначим через At матрицу прямых затрат, элементы которой ati,j, отражают затраты продукции i-й отрасли (в денежном выражении) на изготовление единицы продукции j-й отрасли в t-й момент времени. Если Xt = ║xti,j║nxm — матрица, задающая удельные нормы продукции i-й отрасли, идущей на расширение производства в j-й отрасли, а уt =(уt1, уt2 ,..., уtn) — вектор объемов продукции отраслей потребления, идущей на потребление, то условие расширенного воспроизводства можно записать как
где z0 =ž — исходный запас продукции отраслей предполагается заданным и
В рассматриваемой модели величиныzt являются параметрами состояния системы, а Xt — управляющими параметрами. На ее базе могут быть поставлены различные задачи, типичным представителем которых является задача оптимального вывода экономики на момент Т к некоторому заданному состояниюz*. Данная задача сводится к отысканию последовательности управляющих параметров
удовлетворяющих условиям (6.24)-(6.25) и минимизирующих функцию
6.2.2. Простейшая задача оптимального управления. Один из приемов, применяемых для решения экстремальных задач, состоит в выделении некоторой проблемы, допускающей относительно несложное решение, к которой в дальнейшем могут быть сведены остальные задачи.
Рассмотрим так называемую простейшую задачу управления. Она имеет вид
Специфика условий задачи (6.27)-(6.29) состоит в том, что функции качества управления (6.27) и ограничения (6.28) являются линейными относительно zt, в то же время функция g(t,хt), входящая в (6.28), может быть произвольной. Последнее свойство делает задачу нелинейной даже приt=1, т. е. в статическом варианте.
Общая идея решения задачи (6.27)-(6.29) сводится к ее «расщеплению» на подзадачи для каждого отдельно взятого момента времени, в предположении, что они успешно разрешимы. Построим для задачи (6.27)-(6.29) функцию Лагранжа
где λt —вектора множителей Лагранжа (t∊0:Т). Ограничения (6.29), носящие общий характер, в функцию (6.30) в данном случае не включены. Запишем ее в несколько иной форме
Необходимые условия экстремума функции Ф(х, z, λ) по совокупности векторов zt задаются системой уравнений
которая называется системой для сопряженных переменных. Как можно заметить, процесс нахождения параметров λt в системе (6.32) осуществляется рекуррентным образом в обратном порядке.
Необходимые условия экстремума функции Лагранжа по переменным λt будут эквивалентны ограничениям (6.28), и, наконец, условия ее экстремума по совокупности векторов хt∊Хt, t∊1:(Т-1) должны быть найдены как результат решения задачи
Таким образом, задача поиска оптимального управления сводится к поиску управлений, подозрительных на оптимальность, т. е. таких, для которых выполняется необходимое условие оптимальности. Это, свою очередь, сводится к нахождению таких
t, t, t, удовлетворяющих системе условий (6.28), (6.32), (6.33), которая называется дискретным принципом максимума Понтрягина.Справедлива теорема.
Теорема 6.2. Совокупность векторов t, t, t, удовлетворяющих системе (6.28), (6.32), (6.33), образует седловую точку функции Ф(х, z, λ) (6.30), т. е. при любых допустимых х, z, λ выполняются неравенства |
Доказательство.
Пусть
t, t, t,удовлетворяют системе (6.28), (6.32), (6.33). Тогда из (6.31) и (6.32) следует, чтои поскольку t удовлетворяет (6.33), то