Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 6 из 37)

-Базисный план х называется невырожденным, если все его базисные компоненты строго

положительны, и вы­рожденным в противном случае.

1.3.2. Свойства базисных планов. Следующая теорема трактует понятие базисного плана в терминах первой геометри­ческой интерпретации ЗЛП.

Теорема 1.3. Каждый допустимый базисный план яв­ляется угловой точкой множества допустимых пла­нов D.

Доказательство.

Ради простоты положим, что базисными векторами являют­ся первые m столбцов матрицы A, т. е. β={al,a2,...,am}. Тогда утверждение теоремы 1.3 может быть переформулировано сле­дующим образом:

Если существует такой n-мерный вектор

чтоx1a1 +х2а2 +...+xkak =b, то х есть угловая точка множе­ства D.

Проведем доказательство от противного, т. е. предположим, что рассматриваемый базисный план х не является угловой точ­кой множества D. Тогда ее можно представить в виде выпуклойкомбинации некоторых двух различных допустимых планов х1 и х2:

x = λx1+(1-λ)x2, 0<λ<1.

В координатной форме последнее утверждение означает

Поскольку последние (n - k) компоненты вектора х по пред­положению равны 0, а числа хj1,xj2 ≥ 0 и λ, (1 -λ )>0, то эти же компоненты в векторах x1 и х2 также равны 0. Поэтому, с учетом допустимости планов х1 и х2, можно утверждать, что

Вычитая из (1.15) (1.16), получим

Так как векторы а1,а2,...,аk — линейно независимы, то коэф­фициенты х11х21 =0,..., х1k –х2k =0, из чего следует, что x1 =х2. Это противоречит предположению, что х1 и х2 являются раз­личными угловыми точками множестваD. Следовательно, х не может быть представлен в виде выпуклой комбинации двух точек D и по определению является угловой точкой данного множества. -

Интересно отметить, что справедливо и обратное утвержде­ние, которое приведем без доказательства:

Если х — угловая точка множества D, то она являет­ся допустимым базисным планом задачи (D, f).

В завершение параграфа необходимо отметить практиче­ское значение установленной связи между угловыми точками и допустимыми базисными решениями: она позволяет формали­зовать (и тем самым существенно упростить) процесс перехода от одной угловой точки к другой.

1.4. СИМПЛЕКС-МЕТОД

1.4.1. Основные этапы симплекс-метода. Исходя из свойств линейных экстремальных задач, рассмотренных в пре­дыдущих параграфах, можно заключить, что на принципиаль­ном уровне поиск их решений сводится к последовательному перебору угловых точек множества допустимых планов или, что то же самое, перебору соответствующих допустимых ба­зисных планов. Следует подчеркнуть, что такой перебор для реальных многомерных задач возможен только в теоретиче­ском плане и на практике неосуществим (или крайне неэффек­тивен) даже при условии использованиямощной вычислитель­ной техники. Средством решения данной проблемы явились прикладные оптимизационные методы, основанные на последо­вательном, целенаправленном переборе базисных планов ЗЛП.

Классическим методом решения ЗЛП стал симплекс-ме­тод, получивший также в литературе название метода по­следовательного улучшения плана, разработанный в 1947г. американским математиком Джорджем Данцигом.

Идея такого перехода от одного базисного плана к другому, при котором происходит «улучшение» значения целевой функ­ции, может быть продемонстрирована для случая m = 2 с помо­щью рис. 1.4. Если вектор ограничений b принадлежит конусу, натянутому на некоторые два базисных вектора условий {аj1j2}, то существует такой базисный план х с базисными компонентами хj1,хj2, чтоb= хj1aj1 + хj2aj2 . Разумеется, таких планов может быть несколько в зависимости от выбора систе­мы базисных векторов. Чтобы различать их по соответствую­щей величине целевой функцииf(x)=cj1xj1 +сj2хj2, вводятся так называемые расширенные векторы условий и ограничений. В общем случае расширенный столбец условийāj получается соединением коэффициента целевой функции сj и столбца аj:

расширенный вектор ограничений определим как

В дальнейшем для удобства нумерации элементов будем счи­тать, что добавляемый коэффициент целевой функции сj явля­ется нулевым элементом j-го расширенного столбца условий, т. е.ā0,j = сj. При изображении расширенных векторов нулевая координата откладывается вдоль вертикальной оси — оси апп­ликат.

Рассмотрим также вектор

=

Геометрически определение вектора b означает, что он при­надлежит конусу, натянутому на расширенные векторы, а век­тор служит его проекцией. Нулевая координата вектора b имеет вид:

т. е. равна значению целевой функции для выбранного базисно­го плана.

Из геометрической иллюстрации следует, что для решения задачи мы должны среди векторов аj выбрать такой набор {аj1j2}, чтобы, прямая, проведенная через конец вектора параллельно оси аппликат, пересекала конус, натянутый на систему соответствующих расширенных столбцов { āj1, āj2}, в «наивысшей» точке.

На рис. 1.4 выделен конус, натянутый на систему расширен­ных столбцов ā2 и ā3, отвечающих текущему допустимому ба­зису. Нетрудно заметить, что данный базис не является опти­мальным, например, для базиса {а3, а4} точка пересечения соответствующего конуса и прямой будет находиться выше. Можно, наоборот, указать базис с «худшим» значением целе­вой функции: {а1 а2}. Наконец, рассматриваемая геометричес­кая интерпретация КЗЛП иллюстрирует и общую идею крите­рия, который используется в симплекс-методе для определения оптимальности (или неоптимальности) текущего плана: если существуют векторы-столбцы, лежащие выше плоскости,проходящей через векторы текущего базиса, то он не явля­ется оптимальным и может быть «улучшен».

С вычислительной точки зрения критерий оптимальности в симплекс-методе реализуется через нахождение специальных оценок для небазисных векторов-столбцов, относительно теку­щего базиса.

Для удобства дальнейшего изложения введем некоторые обозначения. Учитывая то, что симплекс-метод представляет собой некоторый итеративный вычислительный процесс, то че­резq будем обозначать номер очередной (текущей) итерации. Соответственно, набор базисных столбцов, получаемых на q-й итерации, будет обозначаться как β(q):

Для того чтобы было легче отличить номер итерации от номе­ров компонентов матриц и векторов, он заключен в круглые скобки. Номера столбцов, входящих в базис, обозначим через N(q)), а именно

При этом Nr(q)) =jr — номер столбца, занимающего r-ю пози­цию в базисе. Тогда текущий базисный план х имеет вид:

Обозначим через Δ(ß(q)) матрицу, составленную из столбцов {аj1, аj2,..., аjm}, образующих базис, через Δ(ß(q)) матрицу, об­разованную из соответствующих расширенных столбцов и до­полненную слева столбцом специального вида:


а через ∆-1(q)) и ∆-1(q)) — матрицы, обратные по отношению к ним. Также представляется удобным ввести отдельные обо­значения для элементов матрицы ∆-1(q)):