Смекни!
smekni.com

Математические методы исследования операций в экономике (стр. 9 из 37)

Легко заметить, что проблемы со сходимостью симплекс-ме­тода потенциально могут возникнуть на этапе выбора значения r (п. 2") в случае, когда одинаковые минимальные значения от­ношения

будут достигнуты для нескольких строк таблицы Т(q) одновре­менно. Тогда на следующей итерации столбец b(q+1)) будет со­держать нулевые элементы. Напомним, что

-допустимый базисный план канонической задачи ЛП, со­ответствующий базисуβ(q), называется вырожденным, если некоторые его базисные компоненты равны нулю, т. е. вектор b(q)) содержит нулевые элементы.

Задача ЛП, имеющая вырожденные планы, называется вы­рожденной. При «выходе» на вырожденный план мы фактиче­ски получаем разложение столбцаb по системе из меньшего, чем m, количества столбцов аj и, следовательно, лишаемся воз­можности корректно определить, ввод какого столбца в базис приведет к росту значения целевой функции. Подобные ситуа­ции, в конечном счете, могут привести к зацикливанию вычис­лительного процесса, т. е. бесконечному перебору одних и тех же базисов.

С точки зрения первой геометрической интерпретации ЗЛП ситуация вырожденности означает, что через некоторую угло­вую точку многогранного множества допустимых планов зада­чи, соответствующую текущему базисному плану, проходит более чем m гиперплоскостей ограничений задачи. Иными сло­вами, одно или несколько ограничений в данной точке являют­ся избыточными. Последнее предоставляет повод для размыш­лений об экономической стороне проблемы вырожденности как проблемы наличия избыточных ограничений и в некоторых случаях определяет пути ее решения.

С точки зрения второй геометрической интерпретации ЗЛП вырожденность означает «попадание» линии, проходящей через вершину вектора b параллельно оси аппликат, в ребро кону­са, натянутого на систему расширенных векторов текущего базиса. Так, в случае, изображенном на рис. 1.6, эта линия по­падает в ребро, определяемое вектором аj2 , т. е., несмотря на то что текущий базис содержит столбцы аj1 и аj2, для представле­ния вектора b достаточно только одного аj2.

Из данной интерпретации вытекает и идея метода решения вырожденных задач ЛП, получившего названия метода возму­щений: при выходе на вырожденный план осуществляется не­значительный сдвиг вектора b и вырожденность (как это видно из иллюстрации) устраняется.

Необходимо, однако, сказать, что рассмотренная здесь про­блема зацикливания для большинства практически значимых задач является достаточно редкой и маловероятной. Более того, она очень часто разрешается за счет ошибок округлений при выполнении расчетов на ЭВМ.

1.4.5. Нахождение допустимого базисного плана. В рас­смотренном выше примере исходный базисный план, необходи­мый для начала вычислений по симплекс-методу, был подобран за счет особенностей матрицы условий. Действительно, данная матрица уже содержала необходимое количество «почти базис­ных» столбцов. Очевидно, что для подавляющего большинства задач ЛП невозможно подобным образом сразу и в явном виде указать исходный допустимый базисный план. Вообще говоря, существуют различные приемы решения данной задачи. Мы остановимся на одном из них, получившем название метода минимизации невязок. Его сильной стороной, безусловно, яв­ляется универсальность. Xотя, в некоторых частных случаях, он может оказаться слишком громоздким.

Идея метода минимизации невязок состоит в построении со­ответствующей вспомогательной задачи, для которой можно в явном виде указать исходный базисный план, и решении ее с помощью процедуры симплекс-метода.

Не умаляя общности, можно считать, что вектор ограниче­ний в исходной задаче неотрицателен, т. е. bi ≥ 0,iÎ 1: m. Тогда для КЗЛП максимизации функции

на множестве, определяемом ограничениями

строится вспомогательная задача

Как видно из (1.36)-(1.39), задача (

,
) отличается от за­дачи (D,f) матрицей, получаемой в результате добавления кисходной матрице А единичной матрицы, которой соответ­ствуют дополнительные (фиктивные) переменные хn+1,...,хn+m. Данным переменным (собственно говоря, их и называют не­вязками) в целевой функции
отвечают коэффициенты (-1), а переменным х1,...,хn, которые являются общими для обеих задач, — нулевые коэффициенты. Существенной особенно­стью (
,
) является наличие в ней очевидного исходного ба­зиса, образуемого добавленными столбцами, и соответствую­щего плана с базисными компонентами хn+i = bi ≥ 0, iÎ 1: m. В силу структуры целевой функции в процесс поиска ее мак­симума процедурой симплекс-метода фиктивные переменные (невязки) хn+i должны минимизироваться желательно до нуля, что может быть достигнуто за счет последовательного перевода их в небазисные компоненты плана. Если в оптималь­ном плане х̃, полученном в результате решения вспомогатель­ной задачи, последние m компонент (т. е. невязки) равны нулю, то его начальные n компонент удовлетворяют системе ограни­чений, определяющих область D, и
легко (простым отбра­сыванием невязок) может быть преобразован в стартовый до­пустимый план основной задачи (D, f). При этом все строки симплекс-таблицы, полученной на последней итерации вспо­могательной задачи (за исключением нулевой), могут быть перенесены в первую таблицу основной задачи. Элементы же нулевой строки для вновь формируемой симплекс-таблицы вы­числяются по формулам:

где β(*) — базис, полученный на последней итерации вспомога­тельной задачи.

В случае, когда оптимальный план вспомогательной задачи х̃ все же содержит не равные нулю фиктивные компоненты (т. е.

(
)<0), мы приходим к заключению об отсутствии до­пустимых планов у исходной задачи (D, f), т. е.D = Ø.

1.5. МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД

1.5.1. Вычислительная схема, основанная на преобра­зовании обратных матриц. Анализируя вычислительную процедуру симплекс-метода с позиций оценки трудоемкости, не­трудно заметить, что наиболее критичным в этом плане являет­ся этап пересчета значений А и b при переходе от одного базис­ного плана к другому (п. 3 алгоритма). Однако в том случае, когда число ограничений задачи m явно меньше количества переменных n, можно добиться существенной «экономии», вы­полняя на очередной итерацииq преобразование Жордана—Га­уссане над матрицей А(q)), а над матрицей Δ-1(q)). При этом учитывается и то, что при необходимости, применяя формулу (1.26), всегда можно получить А(q))по Δ-1(q)). Более того, для выполнения описанных выше действий симплекс-процедуры нам в действительности не требовалась матрица А(q))целиком. Реаль­но в ней использовались только строка оценок a0(q)) и ведущий столбецal(q)). Данные соображения положены в основу вы­числительной схемы симплекс-метода, основанной на преобра­зовании обратных матриц, которую также называют модифици­рованным симплекс-методом. Впервые данный алгоритм был предложен в 1951 г. в работах Л. В. Канторовича.