Zij=(Xij-Xiсред)Si ;
Si=[1/(n-1)*сумма(Xij-Xiсред)^2]^(1/2) ;
где Zij стандартизованные переменные;
Si стандартизированное отклонение.
В модели участвуют главные компоненты Wj, которые представляют собой следующее:
Wj=V1Z1+V2Z2+...+VrZr
где Vj собственный вектор, который удовлетворяет системе уравнений:
(Z’z-KI)*Vj=0
где Z’z корреляционная матрица;
КI характеристические корни уравнения | Z’z-KI|=0 .
Корреляция главных компонент показывает тесноту связи Хi с главными компонентами. Переменные Х1,Х2,Х4 имеют интенсивную связь с первой главной компонентой, а Х3 среднюю, вторая главная компонента интенсивно связана с переменной Х5. Следовательно валовый сбор зерна (X1), валовый сбор сахарной свеклы (X2), население России (X4), потребление пива (X5) имеют некоторую гипотетическую величину, зависимую от них. Модель полученная по методу главных компонент определяет величину Y на 87.43% ( R квадрат).
Проведем прогнозы по полученным моделям и сделаем оценки прогнозов.
прогноз | Gt | Dср | Eпр-сред | K | KH | KH1 | V | Vмю | Vs | Vl |
регрессия от факторов | 2.5273 | 1.552086 | 0.843786 | 0.13734 | 0.015911 | 0.0164 | 0.1373 | 0.008 | 0.009699 | 169.4348 |
регрессия от главных компонент | 6.633742 | 4.78329 | 2.587049 | 0.360434 | 0.041764 | 0.0432 | 0.3604 | 0.002 | 0.076127 | 124.1527 |
экспоненциальное сглаживание | 11.42036 | 7.739524 | 3.974608 | 0.62061 | 0.071899 | 0.0744 | 0.6206 | 0.006 | 0.169182 | 168.1134 |
метод гармонических весов | 8.637442 | 3.711905 | 2.035688 | 0.46938 | 0.054378 | 0.0563 | 0.4693 | 0.018 | 0.074788 | 157.9697 |
регрессия от времени | 16.61707 | 11.85095 | 6.213912 | 0.903012 | 0.104615 | 0.1083 | 0.903 | 0.012 | 0.169182 | 263.5587 |
Из данной таблицы видно, что наиболее точной моделью прогноза считается регрессия от факторов, т.к. Gt=2.5273. Eпр-сред указывает о точности высокой точности прогноза, К - о том что данная модель довольно сильно близка к эталонной (простая экстрополяция), КН - модель близка к совершенной, а КН1 - что модель лучше чем модель на уровне средней, V - что модель близка к простой экстрополяции, Vмю - что центральная тенденция определена точно, Vs - что отклонения фактических и прогнозных достаточно точно совпадают, Vl - слабая связь между прогнозными и фактическими значениями.
Заключение.
Основными выводами по проведенной работе можно считать следующее:
1- производство ликеро-водочных изделий (Y) имеет тенденцию к постоянному росту;
2 - наиболее сильно оно зависит от потребления водки (Х5) и от валового сбора сахарной свеклы (X2) ;
3 - наиболее лучшей моделью для проведения прогноза служит модель полученная по корреляционно-регрессионному методу , которая на 97,66% описывает
производство ликеро-водочных изделий (Y);
4 - прогноз следует проводить по модели регрессии от факторов, характеристики которой наиболее достоверные;
5 - для построения наиболее точной модели следует рассмотреть большее количество факторов, влияние которых в большей мере бы определяло производство ликеро-водочных изделий (Y);
6 - влияние валового сбора зерна (X1), потребления пива (Х3) и населения России (Х4)фактически не существенно сказывается на изменение производства ликеро-водочных изделий (Y);
7 - полученная модель пригодна для прогноза лишь на краткосрочный период.