который вычисляется вдоль изокванты при неизменном уровне затрат прочих производственных факторов. Величина sjk представляет собой характеристику относительного изменения коэффициента взаимной замены ресурсов при изменении соотношения между ними. Если отношение взаимозаменяемых ресурсов изменится на sjk процентов, то коэффициент взаимной замены sjkизменится на один процент. В случае линейной производственной функции коэффициент взаимной замены остается неизменным при любом соотношении используемых ресурсов и поэтому можно считать, что эластичность s jk = 1. Соответственно большие значения sjk свидетельствуют о том, что возможна большая свобода в замене производственных факторов вдоль изокванты и при этом основные характеристики производственной функции (продуктивности, коэффициент взаимозамены) будут меняться очень слабо.
Для степенных производственных функций для любой пары взаимозаменяемых ресурсов справедливо равенство s jk = 1. В практике прогнозирования и предплановых расчетов часто используются функции постоянной эластичности замены (СЕS), имеющие вид:
Для такой функции коэффициент эластичности замены ресурсов
и не меняется в зависимости от объема и отношения затрачиваемых ресурсов. При малых значениях s jk ресурсы могут заменять друг друга лишь в незначительных размерах, а в пределе при s jk = 0 они теряют свойство взаимозаменяемости и выступают в процессе производства лишь в постоянном отношении, т.е. являются взаимодополняющими. Примером производственной функции, описывающей производство в условиях использования взаимодополняющих ресурсов, является функция выпуска затрат, которая имеет вид
где a j постоянный коэффициент ресурсоотдачи j -того производственного фактора. Нетрудно видеть, что производственная функция такого типа определяет выпуск по узкому месту на множестве используемых производственных факторов. Различные случаи поведения изоквант производственных функций для различных значений коэффициентов эластичности замены представлены на графике (рис. 3).
Представление эффективного технологического множества с помощью скалярной производственной функции оказывается недостаточным в тех случаях, когда нельзя обойтись единственным показателем, описывающим результаты деятельности производственного объекта, но необходимо использовать несколько (М) выходных показателей. В этих условиях можно использовать векторную производственную функцию
Рис. 3. Различные случаи поведения изоквант
Важное понятие предельной (дифференциальной) продуктивности вводится соотношением
Аналогичное обобщение допускают все остальные главные характеристики скалярных производственных функций.
Подобно кривым безразличия изокванты также подразделяются на различные типы.
Для линейной производственной функции вида
где Y объем производства; A , b 1 , b 2 параметры; K , L затраты капитала и труда, и полном замещении одного ресурса другим изокванта будет иметь линейную форму (рис. 4).
Для степенной производственной функции
изокванты будут иметь вид кривых (рис. 5).
Если изокванта отражает лишьодин технологический способ производства данного продукта, то труд и капитал комбинируются в единственно возможном сочетании (рис. 6).
Рис. 4. Изокванты линейного типа | Рис. 5. Изокванты степенной производственной функции |
Рис. 6. Изокванты при жесткой дополняемости ресурсов
Рис. 7. Ломаные изокванты
Такие изокванты иногда называют изоквантами леонтьевского типа по имени американского экономиста В.В. Леонтьева, который положил такой тип изокванты в основу разработанного им метода inputoutput (затраты выпуск).
Ломаная изокванта предполагает наличие ограниченного количества технологий F (рис. 7).
Изокванты подобной конфигурации используются в линейном программировании для обоснования теории оптимального распределения ресурсов. Ломаные изокванты наиболее реалистично представляют технологические возможности многих производственных объектов. Однако в экономической теории традиционно используют главным образом кривые изокванты, которые получаются из ломаных при увеличении числа технологий и увеличении соответственно точек излома.
3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ПРОИЗВОДСТВЕННОЙ ФУНКЦИИ.
3.1 Моделирование издержек и прибыли предприятия (фирмы)
В основе построения моделей поведения производителя (отдельного предприятия или фирмы; объединения или отрасли) лежит представление о том, что производитель стремится к достижению такого состояния, при котором ему была бы обеспечена наибольшая прибыль при сложившихся рыночных условиях, т.е. прежде всего при имеющейся системе цен.
Наиболее простая модель оптимального поведения производителя в условиях совершенной конкуренции имеет следующий вид: пусть предприятие (фирма) производит один продукт в количествеy физических единиц. Если p экзогенно заданная цена этого продукта и фирма реализует свой выпуск полностью, то она получает валовой доход (выручку) в размере
В процессе создания этого количества продукта фирма несет производственные издержки в размере C (y). При этом естественно считать, что C' (y) > 0, т.е. издержки возрастают с увеличением объема производства. Также обычно полагают, что C'' (y) > 0. Это означает, что дополнительные (маргинальные) издержки на производство каждой дополнительной единицы продукции возрастают по мере увеличения объема производства. Это предположение связано с тем, что при рационально организованном производстве, при малых объемах могут быть использованы лучшие машины и высококвалифицированные работники, которых уже не окажется в распоряжении фирмы,когда объем производства вырастет. Производственные издержки состоят из следующих составных частей:
1) материальные затраты C m , в число которых входят расходы на сырье, материалы, полуфабрикаты и т.п.
Разность между валовым доходом и материальными затратами называется добавленной стоимостью (условно чистой продукцией):
2) расходы на оплату труда C L ;
Рис. 8. Линии выручки и издержек предприятия
3) расходы, связанные с использованием, ремонтом машин и оборудования, амортизация, так называемая оплата услуг капитала C k ;
4) дополнительные расходы C r , связанные с расширением производства, строительством новых зданий, подъездных путей, линий связи и т.д.
Совокупные производственные издержки:
Как уже было отмечено выше,
однако эта зависимость от объема выпуска (у) для разных видов издержек различна. А именно имеют место:
а) постоянные расходы C 0 , которые практически не зависят от y , в т.ч. оплата административного персонала, аренда и содержание зданий и помещений, амортизационные отчисления, проценты за кредит, услуги связи и т.п.;
б) пропорциональные объему выпуска (линейные) затраты C 1 , сюда входят материальные затраты C m , оплата труда производственного персонала (часть CL), расходы по содержанию действующего оборудования и машин (часть C k ) и т.п.:
где а обобщенный показатель затрат указанных видов в расчете на одно изделие;
в) сверхпропорциональные (нелинейные) затраты С 2 , в составе которых выступают приобретение новых машин и технологий (т.е. затраты типа С r ), оплата сверхурочного труда и т.п. Для математического описания этого вида затрат обычно используется степенная зависимость
Таким образом, для представления совокупных издержек можно использовать модель