Средняя цена снизилась на 18,58% за счет совместного действия двух факторов
В абсолютном выражении это
=(10,04-12,33)=-2,29 р.Т.е. средняя стоимость 1 кг картофеля снизилась на 2,29 руб.
Изменение за счет качественного признака учитывает индекс фиксированного (постоянного) состава
Средняя стоимость 1 кг картофеля снизилась на 18,31% за счет изменения единицы продукции на каждом рынке.
В абсолютном выражении это
= (10,04-12,29)= -2,25 руб.Изменение структуры выпуска продукции (т.е. изменение доли предприятий в общем выпуске продукции) учитывает индекс структурных сдвигов.
Средняя цена картофеля снизилась на 0,34% за счет изменения структуры продажи картофеля.
В абсолютном выражении это
=(12,29-12,33)= 0,04 руб.Взаимосвязь системы индексов:
Iпер=Iфикс*Iстр.
0,814=0,817*0,997
Общий вывод: если бы произошедшие изменения стоимости картофеля не сопровождались структурными изменениями в ее выпуске, то средняя стоимость снизилась бы на 18,31% (на 2 руб. 25 коп.). Изменение структуры продаж на рынках в общем объеме продаж вызвало снижение стоимости на 0,34% (4 коп.). Одновременное воздействие обоих факторов снизило среднюю стоимость 1 кг картофеля на 18,58%, или 2 руб. 29 коп.
Имеются следующие данные о ежесуточной добычеугляпо шахте за первую декаду:
День | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Добыча угля, т. | 800 | 790 | 804 | 808 | 805 | 810 | 800 | 817 | 820 | 832 |
Для анализа динамики добычи угля по шахте определить:
1. абсолютные приросты, темпы роста и прироста добычи угля (базисные и цепные);
2. абсолютное значение 1 % прироста.
3. среднемесячный темп роста и прироста, средний абсолютный прирост (двумя способами);
4. ожидаемый объем добычи угля на 11 день при условии, что среднемесячные темпы с 1 по 10 день сохранятся на 11 день.
Полученные результаты представьте в табличной форме. На основе базисных темпов роста изобразите графически динамику добычи угля.
Сделайте выводы.
Решение:
Показатели динамики
Добыча угля, т. | Абсолютный прирост, Δ, т. | Коэффициент роста, Кр | Темп роста, Тр, % | Темп прироста, Тп, % | Абсолютное значение 1% прироста, Аi | |||||
С переменной базой | С постоянной базой | С переменной базой | С постоянной базой | С переменной базой | С постоянной базой | С переменной базой | С постоянной базой | С переменной базой | ||
дни | значение | |||||||||
1 | 800 | |||||||||
2 | 790 | -10,00 | -10,00 | 0,99 | 0,99 | 98,75% | 98,75% | -1,25% | -1,25% | 8,00 |
3 | 804 | 14,00 | 4,00 | 1,02 | 1,01 | 101,77% | 100,50% | 1,77% | 0,50% | 7,90 |
4 | 808 | 4,00 | 8,00 | 1,00 | 1,01 | 100,50% | 101,00% | 0,50% | 1,00% | 8,04 |
5 | 805 | -3,00 | 5,00 | 1,00 | 1,01 | 99,63% | 100,63% | -0,37% | 0,63% | 8,08 |
6 | 810 | 5,00 | 10,00 | 1,01 | 1,01 | 100,62% | 101,25% | 0,62% | 1,25% | 8,05 |
7 | 800 | -10,00 | 0,00 | 0,99 | 1,00 | 98,77% | 100,00% | -1,23% | 0,00% | 8,10 |
8 | 817 | 17,00 | 17,00 | 1,02 | 1,02 | 102,13% | 102,13% | 2,13% | 2,13% | 8,00 |
9 | 820 | 3,00 | 20,00 | 1,00 | 1,03 | 100,37% | 102,50% | 0,37% | 2,50% | 8,17 |
10 | 832 | 12,00 | 32,00 | 1,01 | 1,04 | 101,46% | 104,00% | 1,46% | 4,00% | 8,20 |
Средние показатели динамики
Показатель | Средний Абсолютный прирост, т. | Средний Коэффициент рост | Средний Темп роста, % | Средний Темп прироста, % | Средняя величина абсолютного значения 1% прироста |
Метод расчета | 0 | ||||
Значение | 3,56 | 1,004 | 100,44% | 0,44% | 8,14 |
Рассчитаем ожидаемый объем добычи угляна 11 день при условии, что среднемесячные темпы роста с 1 по 10 день сохранятся на 11 день.
;На основании рассмотренных данных мы видим, что темп роста добычи угля за рассматриваемый период колеблется. За десять дней лет темп прироста составил 4%. Средний коэффициент роста составил около 1,004 раза, что соответствует среднему приросту в день 0,44%. Средний абсолютный прирост составил 3,56 т. в день.
По данным задачи 1 найдите уравнение корреляционной связи между факторным (х) и результативным (у) признаками. Проанализируйте параметры уравнения регрессии. Для оценки тесноты связи между признаками исчислите линейный коэффициент корреляции и коэффициент детерминации. Изобразите корреляционную связь графически.
Решение:
Найдем уравнение линейной регрессии
Заполним вспомогательную таблицу:
Таблица
x | y | х2 | y2 | хy | ||||
7,2 | 134,4 | 51,84 | 18063,36 | 967,68 | 125,46 | 8,94 | 0,067 | 79,88 |
7,6 | 145 | 57,76 | 21025 | 1102 | 138,02 | 6,98 | 0,048 | 48,75 |
8,4 | 170 | 70,56 | 28900 | 1428 | 163,13 | 6,87 | 0,040 | 47,20 |
9,2 | 180 | 84,64 | 32400 | 1656 | 188,24 | 8,24 | 0,046 | 67,92 |
10 | 216 | 100 | 46656 | 2160 | 213,35 | 2,65 | 0,012 | 7,01 |
11 | 240 | 121 | 57600 | 2640 | 244,74 | 4,74 | 0,020 | 22,49 |
11,6 | 264 | 134,56 | 69696 | 3062,4 | 263,58 | 0,42 | 0,002 | 0,18 |
12,4 | 277 | 153,76 | 76729 | 3434,8 | 288,69 | 11,69 | 0,042 | 136,61 |
13,2 | 308 | 174,24 | 94864 | 4065,6 | 313,80 | 5,80 | 0,019 | 33,64 |
14 | 338 | 196 | 114244 | 4732 | 338,91 | 0,91 | 0,003 | 0,83 |
14,8 | 362 | 219,04 | 131044 | 5357,6 | 364,02 | 2,02 | 0,006 | 4,09 |
15,6 | 372 | 243,36 | 138384 | 5803,2 | 389,13 | 17,13 | 0,046 | 293,59 |
15,6 | 375 | 243,36 | 140625 | 5850 | 389,13 | 14,13 | 0,038 | 199,79 |
16 | 427 | 256 | 182329 | 6832 | 401,69 | 25,31 | 0,059 | 640,57 |
18,8 | 464 | 353,44 | 215296 | 8723,2 | 489,58 | 25,58 | 0,055 | 654,40 |
19 | 480 | 361 | 230400 | 9120 | 495,86 | 15,86 | 0,033 | 251,51 |
19,8 | 572 | 392,04 | 327184 | 11325,6 | 520,97 | 51,03 | 0,089 | 2603,99 |
22 | 585 | 484 | 342225 | 12870 | 590,03 | 5,03 | 0,009 | 25,28 |
21 | 586 | 441 | 343396 | 12306 | 558,64 | 27,36 | 0,047 | 748,67 |
23 | 603 | 529 | 363609 | 13869 | 621,42 | 18,42 | 0,031 | 339,20 |
290,20 | 7098,40 | 4666,60 | 2974669,36 | 117305,08 | 7098,40 | 259,12 | 0,710 | 6205,59 |
Определим коэффициенты регрессии: