Графики и их значение
ные сооружения из соединенных проволокой или стержнями в определенном соотношении многоцветных деревянных шаров, представляющих протоны, нейтроны и т. д. Экономисты часто используют графики для иллюстрации своих моделей, а студенты, понимая эти "картинки", могут лучше воспринять то, что им говорят экономисты.
Большинство из рассматриваемых нами принципов или моделей, с которыми мы встретимся, будет объяснять связь лишь между двумя группами экономических фактов; поэтому простые двухмерные графики служат удобным средством демонстрирования этих связей и манипулирования ими.
ПОСТРОЕНИЕ ГРАФИКА
График представляет собой лишь наглядное изображение зависимости между двумя переменными. Таблица 1 дает нам простую гипотетическую иллюстрацию, показывающую зависимость между доходом и потреблением. Даже не изучая экономике, можно предположить, что люди с высоким доходом потребляют больше, чем люди с низким доходом. Поэтому не следует удивляться тому, что таблица 1 иллюстрирует тезис, согласно которому потребление возрастает по мере увеличения дохода.Как изобразить содержащуюся в таблице 1 информацию графически? Посмотрите на график, показанный на рисунке 1. Теперь снова рассмотрите информацию в таблице 1, а мы объясним, как убедительно представить эту информацию путем построения графика, который вы только что рассматривали.
Таблица 1 Зависимость между доходом и потреблением
Доход (за неделю, дол) | Потребление (за неделю, дол) | Точки |
0100200300400 | 50100150200250 | АВСDЕ |
Если вы перелистаете страницы этой книги, то обнаружите большое количество графиков. Одни из них выглядят относительно простыми, другие более сложными. Вопреки студенческим шуткам, графики построены экономистами вовсе не для того, чтобы запутывать студентов! Напротив, цель графиков — помочь студентам четко представить себе и понять важные экономические связи. Графики служат средством, с помощью которого экономисты выражают свои теории или модели. Физики и химики иногда иллюстрируют свои теории, строя игрушеч-
Мы здесь пытаемся наглядно, или графически, показать, как изменяется потребление по мере изменения дохода. Поскольку детерминирующим фактором здесь выступает доход, мы представляем его на горизонтальной оси графика, как это обычно принято. А так как потребление является переменной, зависящей от дохода, мы представляем его на вертикальной оси графика, что также обычно принято. Независимую переменную мы помещаем на горизонтальной оси, а зависимую переменную на вертикальной оси.
Теперь нам просто следует выбрать масштабы на вертикальной и горизонтальной осях графика
таким образом, чтобы были наглядно представлены области изменения величин потребления и дохода, а также чтобы рассматриваемые приросты этих величин удобно отражались графически. Как видно, область изменения величин на графике соответствует области изменения величин в таблице 1. В свою очередь, в данном примере в обоих масштабах прирост величин на 100 дол. соответствует отрезку размером приблизительно в полдюйма.
Далее необходимо поместить каждую величину потребления и каждую величину дохода, от которой она зависит, на единственной точке, графически отражающей указанную выше информацию. Наши пять комбинаций "доход — потребление" наносятся на график путем проведения перпендикуляров от соответствующих точек на вертикальной и горизонтальной осях. Например, для нахождения точки С (200 дол. дохода — 150 дол. потребления) следует провести перпендикуляры от горизонтальной оси (доход) от 200 дол. и перпендикулярной оси от 150 дол. Эти перпендикуляры пересекутся в точке С, которая и образует конкретное сочетание "доход — потребление". Вам следует удостовериться в том, что все остальные комбинации "доход — потребление", приведенные в таблице 1, правильно помещены на рисунке 1. Приняв допущение, что такое же общее соотношение между доходом и потреблением распространяется и на все другие точки между пятью нанесенными на графике, можно начертить линию, или кривую, соединяющую эти точки.
Используя рисунок 1 в качестве отправной базы, мы теперь можем сформулировать ряд дополнительных важных положений.
Рисунок 1. Графическое изображение прямо пропорциональной зависимости между потреблением и доходом
Два ряда прямо пропорционально связанных между собой величин, скажем потребления и дохода, изображаются в виде восходящей прямой. В данном случае ось координат пересекается на уровне 50 дол., а наклон прямой составляет + 1/2.
ПРЯМЫЕ И ОБРАТНЫЕ ЗАВИСИМОСТИ
В этом примере восходящая линия показывает нам, что существует прямая связь между доходом и потреблением. Положительная, или прямая, зависимость означает, что две переменные — в данном случае потребление и доход — изменяются в одном и том же направлении. Увеличение потребления связано с приростом дохода; наоборот, уменьшение потребления связано с сокращением дохода. Когда между двумя рядами данных существует положительная, или прямая, зависимость, они всегда графически изображаются в виде восходящей линии, как на рисунке 1.В противоположность этому, связь между двумя рядами данных может быть и обратной. Посмотрите на таблицу 2, которая показывает связь между ценой билетов на баскетбольные матчи и числом посетителей этих матчей в некоем университете штата. Здесь мы видим отрицательную, или обратную, связь между ценами на билеты и числом посетителей; эти две переменные изменяются в противоположных направлениях. Когда цены на билеты снижаются, число посетителей увеличивается. Наоборот, когда цены на билеты повышаются, число посетителей уменьшается.
На рисунке 2 мы нанесли шесть точек по данным таблицы 2, следуя указанному выше методу. При этом мы обнаружили, что обратная связь всегда изображается на графике в виде нисходящей линии.
Таблица 2. Зависимость между ценой на билеты я числом посетителей
Цена билета (дол.) | Число посетителей (тыс.) | Точки |
2520151050 | 048121620 | ABCDEF |
ЗАВИСИМЫЕ И НЕЗАВИСИМЫЕ ПЕРЕМЕННЫЕ
Несмотря на то, что сама по себе эта задача чрезвычайно трудна, экономисты стремятся определить, какая из переменных служит "причиной", а какая — "следствием". Иначе говоря, мы должны установить, какая переменная независима, а какая— зависима. По определению, зависимая переменная — это "следствие", или результат: это переменная, которая изменяется вследствие изменения какой-то другой (независимой) переменной. Соответственно независимая переменная — это "причина"; это переменная, которая вызывает изменение зависимой переменной. Как уже отмечалось, в нашем примере с комбинацией "доход — потребление" общепризнано, что доход пред-
ставляет собой независимую переменную, а потребление — зависимую переменную. Правильно сказать, что размер дохода определяет величину потребления, а не наоборот. Так, цены на билеты определяют посещаемость баскетбольных матчей на стадионе упомянутого университета, посещаемость же не определяет цену билетов. Цена билетов — это независимая переменная, а количество купленных билетов — это зависимая переменная.
Вспомните, что на уроках в средней школе учителя математики всегда помещали независимую переменную (причину) на горизонтальной оси, а зависимую переменную (следствие) — на вертикальной оси. Экономисты не столь последовательны; они размещают на графиках независимые и зависимые переменные более произвольно. Например, связь "доход - потребление" они наносят на график так же, как и учителя математики. Однако данные о ценах и издержках они помещают на вертикальной оси. Следовательно, изображение ими на графике связи между ценами на билеты и посещаемостью стадиона не соответствует принятому у математиков правилу.
ПРИ ПРОЧИХ РАВНЫХ УСЛОВИЯХ
Вы, вероятно, уже заметили, что наши простые графики, изображающие связь двух переменных, игнорируют множество других факторов, которые могут повлиять на величину потребления при данном уровне дохода или на число посетителей баскетбольных матчей при каждой возможной цене билета. Когда экономисты изображают связь между двумя переменными, они призывают себе на помощь рассмотренное в основном тексте этой главы допущение ceterisparibus, или "при прочих равных условиях". Так, на рисунке 1 предполагается, что все прочие факторы (то есть все факторы, кроме дохода), которые могут повлиять на объем потребления, остаются постоянными, или неизменными. Равным образом и на рисунке 2 все факторы (кроме цен на билеты), которые могут повлиять на посещаемость баскетбольных матчей, также считаются постоянными. В реальной действительности, как мы знаем, "прочие условия" часто изменяются. И когда это происходит, конкретные связи, представленные в наших двух таблицах и на двух графиках, претерпевают изменения. Соответственно, следует полагать, что и нанесенные на графиках линии сместятся и примут новое положение.Например, что может произойти с соотношением "доход — потребление", когда на фондовой бирже возникает такой "крах", какой имел место 19 октября 1987 г.? Ожидаемый результат этого резкого снижения курса акций должен был бы заставить людей посчитать себя менее богатыми, а поэтому менее склонными сохранить уровень потребления при каждом из уровней дохода. Короче говоря, следовало ожидать понижательное смещение линии потребления на рисунке 1. Пришлось бы провести новую линию потребления, основанную на предположении, что при каждом уровне дохода объ-