Поле | Ферма | Наличие зеленой массы, т | Ui | |||
1-я | 2-я | 3-я | 4-я | |||
1-е | 5 | 6 | 2- | 2- | 0 | |
400 | 400 | 800 | ||||
2-е | 9- | 7 | 4+ | 6+ | 5 | |
1000 | 1000 | |||||
3-е | 7+ | 1 | 4 | 5 | 3 | |
600 | 600 | 1200 | ||||
4-е | 5 | 2 | 2 | 4 | 0 | |
400- | 400 | |||||
5-е | 6 | 4 | 3 | 4- | 2 | |
600 | 600 | |||||
Потребность в зеленой массе, т | 1000 | 600 | 800 | 1600 | 4000 | Z |
Vj | 4 | -2 | 2 | 2 | 17400 |
Переходим к анализу первого опорного плана. Значение целевой функции 17400 тонна-километров.
Проверим, является ли план оптимальным. Если нет – улучшим его.
1. Рассчитаем значения потенциалов:
u1=0; v4=2-0=2; u3=5-2=3; u5=4-2=2; v1=7-3=4; v2=1-3=-2;
v3=2-0=2; u2=9-4=5; u4=4-2=2
2. Рассчитаем характеристики для свободных клеток:
d | 1 | 2 | 3 | 4 |
1 | 5 | 8 | 0 | 0 |
2 | 0 | 4 | -1 | -1 |
3 | 0 | 0 | 0 | 0 |
4 | 1 | 4 | 0 | 2 |
5 | 0 | 4 | -1 | 0 |
3. Максимальная по абсолютной величине отрицательная характеристика в клетке 2,3, для которой строим цепь.
4. Проставляем по углам цепи, начиная с выбранной клетки, знаки «+», «-«. В клетках со знаком «-« минимальная поставка. Ее перераспределяем по цепи. Там где стоит знак «+», прибавляем, а где «-« - отнимаем. Заполняем расчетную таблицу 2.
Поле | Ферма | Наличие зеленой массы, т | Ui | |||
1-я | 2-я | 3-я | 4-я | |||
1-е | 5 | 6 | 2 | 2 | 0 | |
44 | 756 | 800 | ||||
2-е | 9 | 7 | 4 | 6 | 5 | |
756 | 244 | 1000 | ||||
3-е | 7 | 1 | 4 | 5 | 3 | |
400 | 600 | 200 | 1200 | |||
4-е | 5 | 2 | 2 | 4 | 0 | |
400 | 400 | |||||
5-е | 6 | 4 | 3 | 4 | 2 | |
200 | 400 | 600 | ||||
Потребность в зеленой массе, т | 1000 | 600 | 800 | 1600 | 4000 | Z |
Vj | 6 | -2 | 2 | 2 | 15288 |
Расчеты ведем аналогично. Получены следующие характеристики: d51=-2
Перераспределяем по цепи поставку 400. Строим таблицу 3.
Поле | Ферма | Наличие зеленой массы, т | Ui | |||
1-я | 2-я | 3-я | 4-я | |||
1-е | 5 | 6 | 2 | 2 | 0 | |
0 | 0 | 44 | 756 | 800 | ||
2-е | 9 | 7 | 4 | 6 | 3 | |
0 | 0 | 756 | 244 | 1000 | ||
3-е | 7 | 1 | 4 | 5 | 1 | |
0 | 600 | 0 | 600 | 1200 | ||
4-е | 5 | 2 | 2 | 4 | 1 | |
400 | 0 | 0 | 0 | 400 | ||
5-е | 6 | 4 | 3 | 4 | 2 | |
600 | 0 | 0 | 0 | 600 | ||
Потребность в зеленой массе, т | 1000 | 600 | 800 | 1600 | 4000 | Z |
Vj | 6 | 0 | 1 | 2 | 15288 |
Анализ решения: По оптимальному плану необходимо осуществить перевозки в соответсвии с полученной таблицей. В этом случае минимальные затраты на перевозку будут 15288 тонна-километров
Решение методом линейного прораммирования:
1. Проверим, прежде всего условие равенства ресурсов:
С полей поставляется: 800+1000+1200+400+600=4000т зеленой массы
Потребность ферм в зеленой массе: 1000+600+800+1600=4000т, т.е. ресурсы поставщиков равны ресурсам потребителей.
2. Пусть Xij – количество тонн зеленой массы, которое нужно перевезти с i поля на j ферму. Из условия задачи, получаем ограничения:
х11+х12+х13+х14=800
х21+х22+х23+х24=1000
х31+х32+х33+х34=1200
х41+х42+х43+х44=400
х51+х52+х53+х54=600
Из условия потребностей ферм:
х11+х21+х31+х41+х51=1000
х12+х22+х32+х42+х52=600
х13+х23+х33+х43+х53=800
х14+х24+х34+х44+х54=1600
Целевая функция задачи – количество тонна-километров:
Z= 5*х11+6*х12+2*х13+2*х14+
9*х21+7*х22+4*х23+6*х24+
7*х31+1*х32+4*х33+5*х34+
5*х41+2*х42+2*х43+4*х44+
6*х51+4*х52+3*х53+4*х54®min
Решим систему при помощи таблицы Excel (меню «Сервис»/«Поиск решения»). Для этого запишем все ограничения и целевую функцию. В результате выполнения программы, получаем решение:
Поле | Ферма | Наличие зеленой массы, т | Сумма | |||
1-я | 2-я | 3-я | 4-я | |||
1-е | 5 | 6 | 2 | 2 | ||
0 | 0 | 44 | 756 | 800 | 800 | |
2-е | 9 | 7 | 4 | 6 | ||
0 | 0 | 756 | 244 | 1000 | 1000 | |
3-е | 7 | 1 | 4 | 5 | ||
0 | 600 | 0 | 600 | 1200 | 1200 | |
4-е | 5 | 2 | 2 | 4 | ||
400 | 0 | 0 | 0 | 400 | 400 | |
5-е | 6 | 4 | 3 | 4 | ||
600 | 0 | 0 | 0 | 600 | 600 | |
Потребность в зеленой массе, т | 1000 | 600 | 800 | 1600 | Z | |
Сумма | 1000 | 600 | 800 | 1600 | 15288 |
Ответ: По оптимальному плану необходимо осуществить перевозки в соответсвии с полученной таблицей. В этом случае минимальные затраты на перевозку будут 15288 тонна-километров.