Московский Государственный Колледж
Информационных Технологий
Курсовой проект
по предмету
« Языки программирования и разработка
программного обеспечения »
на тему :
« Минимизация стоимостей перевозок »
Работу выполнил Работу проверили
студент группы П-407 Преподаватели
Чубаков А.С. Капустина Р.Н.
Токарев С.Б.
1998 г.
КР. 2203 81 - 21
ВВЕДЕНИЕ
Развитие современного общества характеризуется повышением технического
уровня , усложнением организационной структуры производства , углублением общественного разделения труда , предъявлением высоких требований к методам планирования и хозяйственного руководства. В этих условиях только научный подход к руководству к экономической жизни общества позволит обеспечить высокие темпы развития народного хозяйства. В настоящие время новейшие достижения математики и современной вычислительной техники находят все более широкие применение в экономических исследованиях и планированияx. Этому способствует развитие таких разделов математики . как математическое программирование , теория игр , теория массового обслуживания , а так же бурное развитие быстродействующей электронно - вычислительной техники. Одной из основных ставится задача создания единой системы оптимального планирования и управление народным хозяйством на базе широкого применения математических методов в электронно - вычислительной техники в экономике.
Решение экстремальных экономических задач можно разбить на три этапа :
1. Построение экономико - математической задачи.
2. Нахождение оптимального решения одним из математических методов.
3. Промышленное внедрение в народное хозяйство.
Построение экономическо - математической модели состоит в создании упрощенной математической модели , в которой в схематичной форме отражена структура изучаемого процесса. При этом особое внимание должно быть уделено отражении в модели всех существенных особенностей задачи и учет всех ограничивающих
условий , которые могут повлиять на результат. Затем определяется цель решения , выбирается критерий оптимальности и дают математическую формулировку задачи.
Составными частями математического программирования являются линейное , нелинейное и динамическое программирование. При исследовании в большинстве случаев имеют место задачи нелинейного программирования , аппроксимация их линейными задачами вызвана только тем , что последние хорошо изучены.
Динамическое программирование как самостоятельная дисциплина сформулировалась в пятидесятых годах нашего века. Большой вклад в ее развитие внес американский математик Р. Бельман. Дальнейшие развитие динамическое программирование получило
в трудах зарубежных ученых Робертса , Ланга и др.
В настоящие время оно в основном развивается в планировании приложений к различным родам многоэтапным процессам.
КР. 2203 81 – 21
2. ЭКОНОМИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ
Производственное предприятие имеет в своем составе три филиала которые производят однородную продукцию
соответственно в количествах , равных 50 , 30 и 10 единиц. Эту продукцию получают четыре потребителя , расположенных в разных
местах. Их потребности соответственны равны 30 , 30 , 10 и 20 единиц. Тарифы перевозов единицы продукции от каждого филиалов соответствующим потребителям задаются матрицей :
1 2 4 1
Сij = 2 3 1 5
3 2 4 4
Составить такой план прикрепления получателе продукции к ее поставщикам , при котором общая стоимость перевозок будет минимальной.
КП. 2203 81 - 21
2.МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ
2. Математическая модель задачи
Имеется:
m (i=1,2,…,m) – филиалы.
Ai – количество единиц продукции «i» филиала.
n (j=1,2,…,n) – потребители
Bj – потребности «j» потребителя
Cij – стоимость перевозки 1 условной единицы продукции
от «i» филиала к «j» потребителю
Ограничения:
1. Балансовое ограничение.
Предполагается, что сумма всех запасов (ai) равна сумме всех заявок (bj):2. Ресурсное ограничение.
Суммарное количество груза, направленного из каждого пункта отправления во все пункты назначения должно быть равно запасу груза в данном пункте. Это даст m – условий равенств:
или
3. Плановое ограничение.
КП. 2203 81 - 21
или
4. Реальность плана перевозок.
Перевозки не могут быть отрицательными числами:
5. Требуется составить такой план перевозок, при котором все заявки были бы выполнены и при этом общая стоимость всех перевозок была бы минимальна, поэтому целевая функция или критерий эффективности:
КП. 2203 81 – 21
3.ВЫБОР МЕТОДА РЕАЛИЗАЦИИ ПРОДУКЦИИ.
ОБОСНОВАНИЕ ВЫБОРА МЕТОДА.
Симплекс - метод является универсальным и применяется для решения любых задач.
Однако существуют некоторые частные типы задач линейного программирования ,
которые в силу некоторых особенностей своей структуры допускают решение более
простыми методами. К ним относится транспортная задача.
Распределительный метод решения транспортной задачи обладает одним
недостатком :
нужно отыскивать циклы для всех свободных клеток и находить их цены. От этой
трудоемкой работы нас избавляет специальный метод решения транспортной
задачи , который называется методом потенциалов. Он позволяет автоматически
выделять циклы с отрицательной ценой и определять их цены.
В отличии от общего случая ОЗЛП с произвольными ограничениями и
минимизированной функцией , решение транспортной задачи всегда существует.
Общий принцип определения оптимального плана транспортной задачи методом потенциалов аналогичен принципу решения задачи линейного программирования симплекс - метода ,. а именно : сначала находят опорный план транспортной задачи , а затем его улучшают до получения оптимального плана. Далее будет рассматриваться сам метод потенциалов.
Решение транспортной задачи , как и любой другой задачи линейного программирования начинается с нахождения опорного решения , или , как мы говорим опорного плана. Для его нахождения созданы специальные методы , самым распространенным из них считается метод северо - западного угла.
Определение значений xi,j начинается с левой верхней клетки таблицы. Находим значения x1,1 из соотношения x11 = min{a1,b1}.
Если ai < b1 то x11=a1 , строка i=1 исключается из дальнейшего рассмотрения , а потребность первого потребителя b1 уменьшается на величину a1.
Если a1>b1 , то x11=b1 , столбец j=1 исключается из дальнейшего рассмотрения , а наличие груза у первого поставщика a1 уменьшается на величину b1.
Если a1=b1 , то x11=a1=b1 , строка i=1 и столбец j=1 исключаются из дальнейшего рассмотрения.
Данный вариант приводит к вырождению исходного плана.
Затем аналогичные операции проделывают с оставшийся частью таблицы , начиная с его северо - западного угла. После завершения оптимального процесса необходимо провести проверку полученного плана на вырожденность.
Если количество заполненных клеток равно m + n -1 , то план является невырожденным. Если план вырожденный , т.е количество заполненных клеток стало меньше m + n -1 , то незаполненные клетки с минимальными стоимостями перевозок заполняются нулями , чтобы общие количество заполненных клеток стало равным
m + n -1.
Транспортная задача с неправильным балансом называется открытой моделью .
Чтобы ее решить , необходимое сбалансировать. Достигается это следующим образом: