Смекни!
smekni.com

Билеты математические методы исследования экономики (стр. 4 из 4)

7) Для функции f (x,y) = 10x + 15y в точке (15,10) построить градиент и линию уровня, проходящую через эту точку. Решение изобразить геометрически.

Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 27

1) Привести свойство матриц, имеющих определитель, не равный нулю.

2) Привести запись задачи линейного программирования на минимум в стандартной форме.

3) В игре двух лиц с нулевой суммой привести понятие смешанной стратегии.

4) Понятие градиента функции двух переменных.

5) Приведите схему решения задачи выпуклого программирования с помощью градиентных методов.

6) Записать систему уравнений

в матричной форме.

7) Вычислить значение функции f(x,y) =

в точке (1/2,0).

Зав. кафедрой

--------------------------------------------------

Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 28

1) Дать определение матрицы.

2) Для задачи линейного программирования вида:


построить двойственную.

3) Понятие локального максимума функции двух переменных.

4) Достаточные условия минимума функции двух переменных.

5) В чем состоит задача принятия решения?

6) В игре двух лиц с нулевой суммой матрица выигрышей Н равна:
Н =

Чему равна нижняя цена игры?

7) Найти частную производную второго порядка по х функции
f(x,y) =12xy2 + х + 4х3у - 3.

Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 29

1) Привести свойства операций сложения матриц и умножения матрицы на число.

2) Записать в общем виде задачу линейного программирования на максимум в стандартной форме, если размерность задачи: две переменных, одно ограничение.

3) Область определения функции нескольких переменных.

4) Дать понятие безусловного экстремума функции нескольких переменных.

5) Условия Куна-Таккера.

6) Для матриц Ax и B записать условие Ax£B в виде системы неравенств, если

,
,
.

7) Для следующей задачи выпуклого программирования


построить функцию Лагранжа.

Зав. кафедрой

--------------------------------------------------

Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 30

1) Дать определение степени матрицы.

2) Привести функцию дохода в задаче составления плана производства.

3) Привести основные понятия теории игр.

4) Частные производные высших порядков функции нескольких переменных.

5) Дать понятие оценки альтернативы х по критерию.

6) Известны вектор цен потребительских товаров p = (30, 48, 5) и вектор количества потребляемых товаров q = (2, 2, 25). Найти скалярное произведение и указать смысл скалярного произведения векторов p и q.

7) Найти частную производную первого порядка по у функции
f(x,y) =12xy2 + х + 4х3у - 3.

Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 31

1) Привести свойства операций сложения векторов и умножения на число.

2) Привести запись задачи линейного программирования на максимум в стандартной форме.

3) Привести понятие матричной игры.

4) Свойство положительности частной производной первого порядка по х функции двух переменных (

).

5) Привести постановку задачи стохастического программирования "по средним".

6) Для задачи линейного программирования


Изобразить геометрически множество допустимых планов.

7) Решить задачу стохастического программирования в жесткой постановке:


где a - случайный параметр, с вероятностью 2/5 принимающий значение 2 и с вероятностью 3/5 значение 1.

Зав. кафедрой

--------------------------------------------------

Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 32

1) Дать определение системы линейных неравенств и ее решение.

2) Дать понятие двойственности в линейном программировании.

3) В игре двух лиц с нулевой суммой дать понятие цены игры.

4) Абсолютное приращение функции двух переменных.

5) Что относится к задачам эконометрики?

6) Для матриц А =

и В =
найти А – В.

7) Обосновать выпуклость множества, точки которого являются решением системы неравенств (можно геометрически):

Зав. кафедрой

--------------------------------------------------

Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 33

1) Дать понятие суммы двух векторов.

2) Сформулировать экономический смысл строгой положительности некоторой двойственной оценки, например уi* , если прямая задача – задача составления плана производства.

3) Возрастание функции z = f(x,y) по направлению.

4) Дать понятие однородной функции.

5) Перечислить особенности модели динамического программирования.

6) Найти произведение матриц хАу, если х = (1 4), А =

у =

7) Решить графически задачу выпуклого программирования:

Зав. кафедрой

--------------------------------------------------

Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 34

1) Привести свойства умножения матриц.

2) Сформулировать условие, связанное с тем, что на оптимальном плане некоторое ограничение двойственной задачи линейного программирования, например j-ое, выполняется как строгое неравенство.

3) Возрастание функции z = f(x,y) по переменной у.

4) Понятие линии уровня функции двух переменных.

5) Привести жесткую постановку задачи стохастического программирования.

6) Для вектора х = (3, 7, 0, 2) построить 3х.

7) Найти частную производную второго порядка по х функции
f(x,y) =12xy2 + х + 4х3у - 3 в точке (2,-2).

Зав. кафедрой

--------------------------------------------------


Экзаменационный билет по предмету

МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ЭКОНОМИКИ

Билет № 35

1) Показать результат произведения матрицы размерности m х n на вектор-столбец.

2) Привести экономический смысл строгой положительности некоторой переменной, например хj*, если прямая задача – задача составления плана производства.

3) Дать геометрическую интерпретацию выпуклости функции одной переменной.

4) Частная производная первого порядка по у функции двух переменных.

5) Дать описание ИМА.

6) Даны матрицы

и
. Найти матрицу Ax.

7) Найти общий вид градиента функции f(x,y) = 15 x1/3y2/3.

Зав. кафедрой

--------------------------------------------------