Среднее линейное отклонение:
Дисперсия выработки:
Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:
если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:
,если все значения признака уменьшить или увеличить в одно и то же число раз (hраз), то дисперсия соответственно уменьшится или увеличится в
раз.То есть, если дисперсию уменьшенных значений признака описать следующим выражением
, то илиИспользуя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где
- дисперсия, исчисленная по способу моментов;h- величина интервала вариационного ряда;
- новые (преобразованные) значения вариант;А- постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
- квадрат момента первого порядка; - момент второго порядка.Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 - Расчет дисперсии по способу моментов
Группы рабочих по выработке, шт. | Число рабочих, | Середина интервала, | Расчетные значения | ||
170-190 | 10 | 180 | -2 | -20 | 40 |
190-210 | 20 | 200 | -1 | -20 | 20 |
210-230 | 50 | 220 | 0 | 0 | 0 |
230-250 | 20 | 240 | 1 | 20 | 20 |
Итого | 100 | - | - | -20 | 80 |
Порядок расчета:
определяем постоянное число А, это варианта с наибольшей частотой: А=220;
определяем
;рассчитываем
и ;определяем моменты 1-го и 2-го порядка:
рассчитываем дисперсию:
Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения.
Это альтернативные признаки.
Им придается соответственно два количественных значения: варианты 1 и 0.
Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,
хi | wi |
1 | p |
0 | q |
Средняя арифметическая альтернативного признака
, т.кp+q=1.Дисперсия альтернативного признака
, т.к1-р=qТаким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т.е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.
Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.
Общая дисперсия
измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.Межгрупповая дисперсия
характеризует вариацию результативного признака у, вызванную влиянием признака-фактора х, положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней : ,где
- средняя арифметическая i-той группы; - численность единиц в i-той группе (частота i-той группы); - общая средняя совокупности.Внутригрупповая дисперсия
отражает случайную вариацию, т.е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы: или ,где
- число единиц в группе.На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий:
.Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий, согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:
Пример. При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.