Смекни!
smekni.com

Имитационная модель СТО с использованием программы С++ (стр. 4 из 7)

На этапе разработки модели определяются требования к входным данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуется время и усилия. Обычно значение таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входных параметров оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных. После того как разработана модель и собраны начальные входные данные, следующей задачей является перевод модели в форму, доступную для компьютера.

На этапах верификации и валидации осуществляется оценка функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная для ЭВМ модель замыслу разработчика. Это обычно осуществляется путем ручной проверки вычисления, а также может быть использован и ряд статистических методов.

Установление адекватности имитационной модели исследуемой системы осуществляется на этапе валидации. Валидация модели обычно выполняется на различных уровнях. Специальные методы валидации включают установление адекватности путем использования постоянных значений всех параметров имитационной модели или путем оценивания чувствительности выходов к изменению значений входных данных. В процессе валидации сравнение должно осуществляться на основе анализа как реальных, так и экспериментальных данных о функционировании системы.

Условия проведения машинных прогонов модели определяется на этапах стратегического и тактического планирования. Задача стратегического планирования заключается в разработке эффективного плана эксперимента, в результате которого выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизация или максимизация имитационной модели. В тактическом планировании в отличии от стратегического решается вопрос о том, как в рамках плана эксперимента провести каждый имитационный прогон, чтобы получить наибольшее количество информации из выходных данных. Важное место в тактическом планировании занимают определение условий имитационных прогонов и методы снижения дисперсии среднего значения отклика модели.

Следующие этапы в процессе имитационного исследования- проведение машинного эксперимента и анализ результатов- включают прогон имитационной модели на ЭВМ и интерпретацию полученных выходных данных. Последним этапом имитационного исследования является реализация полученных решений и документирование имитационной модели и ее использование. Ни одни из имитационных проектов не должен считаться законченным до тех пор, пока их результаты не были использованы в процессе принятия решений. Успех реализации во многом зависит от того, насколько правильно разработчик модели выполнил все предыдущие этапы процессов имитационного исследования. Если разработчик и пользователь работали в тесном контакте и достигли взаимопонимания при разработке модели и ее исследовании, то результат проекта скорее всего будет успешно внедряться. Если же между ними не было тесной взаимосвязи, то, несмотря на элегантность и адекватность имитационного моделирования, сложно будет разработать эффективные рекомендации.

Вышеперечисленные этапы редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного моделирования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, переориентировки целей исследования, повторные оценки и перестройки модели. Такой процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решений.

Глава 2. Распределения и генераторы псевдослучайных чисел

Ниже будут использованы следующие обозначения:

X - случайная величина; f(х) - функция плотности вероятности X; F(х) - функция вероятности X;

а - минимальное значение;

b - максимальное значение;

m – мода;

μ -математическое ожидание М[Х]; σ2 —дисперсия М[(Х-μ)2];

σ -среднеквадратичное отклонение; α-параметр функции плотности вероятности;

β - параметр функции плотности вероятности.

2.1 Виды распределений

2.1.1 Равномерное распределение

Функция плотности вероятности равномерного распределения задает одинаковую вероятность для всех значений, лежащих между минимальным и максимальным значениями переменной. Другими словами, вероятность того, что значение попадает в указанный интервал. пропорциональна длине этого интервала. Применение равномерного распределения часто вызвано полным отсутствием информации о случайной величине, кроме ее предельных значений. Равномерное распределение называют также прямоугольным.

f(t) =

при а ≤ t ≤ Ь.

Среднее значение распределения равно μ =

, дисперсия равна σ2=
.

Равномерно распределенная случайная величина X на отрезке [а, b] выражается через равномерно распределенную на отрезке [0, 1] случайную величину Rформулой

X = а + (b - а) *R

Рис.1 Графики функции распределения и плотности распределения:

2.1.2 Треугольное распределение

Треугольное распределение является более информативным, чем равномерное. Для этого распределения определяются три величины - минимум, максимум и мода. График функции плотности состоит из двух отрезков прямых, одна из которых возрастает при изменении X от минимального значения до моды, а другая убывает при изменении X от значения моды до максимума. Значение математического ожидания треугольного распределения равно одной трети суммы минимума, моды и максимума. Треугольное распределение используется тогда, когда известно наиболее вероятное значение на некотором интервале и предполагается кусочно-линейный характер функции плотности. Функция плотности вероятности треугольного распределения имеет вид:

μ=

, σ2=
.

Треугольно распределенная случайная Xсвязана со случайной величиной R, распределенной равномерно на [0,1], соотношением:

Рис.2 График плотности треугольного распределения

2.1.3 Экспоненциальное (показательное) распределение

Если вероятность того, что один и только один результат наступит на интервале Δt, пропорциональна Δt и если наступление результата не зависит от наступления других результатов, величины интервалов между результатами распределены экспоненциально. Другими словами, работа, продолжительность которой экспоненциально распределена имеет одинаковую вероятность завершения в течение любого последующего периода времени Δt. Таким образом, работа, выполняемая за t единиц времени, имеет ту же вероятность окончания в последующий период Δt, что и только что начатая работа. Подобное отсутствие временной обусловленности называется марковским свойством или свойством отсутствия последействия. Существует прямая связь между предположением об экспоненциальности распределения продолжительности работы и марковским свойством. Экспоненциальное распределение предполагает значительную вариабельность переменной. Если математическое ожидание продолжительности работы равно 1/α, то дисперсия равна 1/α2. По сравнению с большинством остальных распределений экспоненциальное обладает большей дисперсией.