Таким образом, перечень характеристик систем массового обслуживания можно представить следующим образом: среднее время обслуживания – tобс; среднее время ожидания в очереди – Точ; среднее пребывания В СМО – Тсмо; средняя длина очереди - Lоч; среднее число заявок в СМО- Lсмо; количество каналов обслуживания – n; интенсивность входного потока заявок – λ; интенсивность обслуживания – μ; интенсивность нагрузки – ρ; коэффициент нагрузки – α; относительная пропускная способность – Q; абсалютная пропускная способность – А; доля времени простоя в СМО – Р0; доля обслуженных заявок – Робс; доля потерянных заявок – Ротк, среднее число занятых каналов – nз; среднее число свободных каналов - nсв; коэффициент загрузки каналов – Кз; среднее время простоя каналов - tпр.
Следует заметить что, иногда достаточно использовать до десяти основных показателей, чтобы выявить слабые места и разработать рекомендации по совершенствованию СМО.
Это часто связано с решением вопросов согласованной рабоиы цепочки или совокупностей СМО.
Например, в коммерческой деятельности необходимо учитывать еще и экономические показатели СМО: общие затраты – С; издержки обращения – Сио, издержки потребления – Сип, затраты на обслуживание одной заявки – С1, убытки, связанные с уходом заявки, - Су1, затраты на эксплуатацию канала – Ск, затраты простоя канала – Спр, капитальные вложения – Скап, приведенные годовые затраты – Спр, текущие затраты – Стек, доход СМО в единицу времени – Д1
В процессе постановки задач необходимо раскрыть взаимосвязи показателей СМО, которые по своей базовой принадлежности можно разделить на две группы: первая связана с издержками обращения Сио, которые определяются числом занятых обслуживанием каналов, затратами на содержание СМО, интенсивностью обслуживания, степенью загрузки каналов, эффективностью их использования, пропускной способностью СМО и др.; вторая группа показателей определяется издержками собственно заявок Сип, поступающих на обслуживание, которые образуют входящий поток, ощущают эффективность обслуживания и связаны с такими показателями, как длина очереди, время ожидания обслуживания, вероятность отказа в обслуживании, время пребывания заявки в СМО и др.
Эти группы показателей противоречивы в том смысле, что улучшение показателей одной группы, например, сокращение длины очереди или времени ожидания в очереди путем увлечения числа каналов обслуживания (официантов, поваров, грузчиков, кассиров), связано с ухудшением показателей группы, поскольку это может привести к увеличению времени простоев каналов обслуживания, затрат на их содержание и т.д. В связи с этим формализации задач обслуживания вполне естественно стремление построить СМО таким образом, чтобы установить разумный компромисс между показателями собственно заявок и полнотой использования возможностей системы. С этой целью необходимо выбрать обобщенный, интегральный показатель эффективности СМО, включающий одновременно претензии и возможности обеих групп. В качестве такого показателя может быть выбран критерий экономической эффективности, включающий как издержки обращения Сио, так и издержки заявок Сип, которые будут иметь оптимальное значение при минимуме общих затрат С. На этом осонвании целевую функцию задачи можно записать так:
С= (Сио+Сип) →min
Поскольку издержки обращения включают затраты, связанные с эксплуатацией СМО – Сэкс и простоем каналов обслуживания - Спр, а издержки заявок включают потери, связанные с уходом не обслуженных заявок – Снз, и с пребыванием в очереди – Соч, тогда целевую функцию можно переписать с учетом этих показателей таким образом:
С= {(Спрnсв+Сэкзnз)+СочРобсλ(Точ+tобс)+СизРоткλ}→min.В зависимости от поставленной задачи в качестве варьируемых, т.е управляемых, показателей могут быть: количество каналов обслуживания, организация каналов обслуживания (параллельно, последовательно, смешанным образом), дисциплина очереди, приоритетность обслуживания заявок, взаимопомощь между каналами и др. Часть показателей в задаче фигурирует в качестве неуправляемых, которые обычно являются исходными данными. В качестве критерия эффективности в целевой функции могут быть так же товарооборот, прибыль, или доход, например, рентабельность, тогда оптимальные значения управляемых показателей СМО находятся очевидно, уже при максимизации, как в предыдущем варианте.
В некоторых случаях следует пользоваться другим вариантом записи целевой функции:
С={Сэкзnз+Cпр(n-nз)+Cотк*Ротк*λ+Ссист* nз}→min
В качестве общего критерия может быть выбран, например, уровень культуры обслуживания покупателей на предприятиях, тогда целевая функция может быть представлена следующей моделью:
Коб=[(Зпу*Ку)+(Зпв*Кв)+(Зпд*Кд)+(Зпз*Кз)+(Зпо*К0)+(Зкт*Ккт)]*Кмп,
где Зпу – значимость показателя устойчивости ассортимента товаров;
Ку - коэффициент устойчивости ассортимента товаров;
Зпв – значимость показателя внедрения прогрессивных методов продажи товаров;
Кв – коэффициент внедрения прогрессивных методов продажи товаров;
Зпд – значимость показателя дополнительного обслуживания;
Кд - коэффициент дополнительного обслуживания;
Зпз - значимость показателя завершенности покупки;
Кз - коэффициент завершенности покупки;
Зпо - значимость показателя затрат времени на ожидание в обслуживании;
Ко – показатель затрат времени на ожидание обслуживания;
Зкт – значимость показателя качества труда коллектива;
Ккт – коэффициент качества труда коллектива;
Кмп – показатель культуры обслуживания по мнению покупателей;
Для анализа СМО можно выбирать и другие критерии оценки эффективности работы СМО. Например, в качестве такого критерия для систем с отказами можно выбирать вероятность отказа Ротк, значение которого не превышало бы заранее заданной величины. Например, требование Ротк<0,1 означает, что не менее чем в 90% случаев система должна справляться с обслуживанием потока заявок при заданной интенсивности λ. Можно ограничить среднее время пребывания заявки в очереди или в системе. В качестве показателей, подлежащих определению, могут выступать: либо число каналов n при заданной интенсивности обслуживания μ, либо интенсивность μ при заданном числе каналов.
После построения целевой функции необходимо определить условия решения задачи, найти ограничения, установить исходные значения показателей, выделить неуправляемые показатели, построить или подобрать совокупность моделей взаимосвязи всех показателей для анализируемого типа СМО, чтобы в конечном итоге найти оптимальные значения управляемых показателей, например количество поваров, официантов, кассиров, грузчиков, объемы складских помещений и др
Глава III. Модели систем массового обслуживания
3.1 Одноканальная СМО с отказами в обслуживании
Проведем анализ простой одноканальной СМО с отказами в обслуживании, на которую поступает пуассоновский поток заявок с интенсивностью λ, а обслуживание происходит под действием пуассоновского потока с интенсивностью μ.
Работу одноканальной СМО n=1 можно представить в виде размеченного графа состояний (3.1).
Переходы СМО из одного состояния S0 в другое S1 происходят под действием входного потока заявок с интенсивностью λ, а обратный переход – под действием потока обслуживания с интенсивностью μ.
λ
S0 |
S1 |
μ
S0 – канал обслуживания свободен; S1 – канал занят обслуживанием;
Рис. 3.1 Размеченный граф состояний одноканальной СМО
Запишем систему дифференциальных уравнений Колмогорова для вероятностей состояния по изложенным выше правилам:
Откуда получим дифференциальное уравнение для определения вероятности р0(t) состояния S0:
Это уравнение можно решить при начальных условиях в предположении, что система в момент t=0 находилась в состоянии S0, тогда р0(0)=1, р1(0)=0.
В этом случае решение дифференциального уровнения позволяет определить вероятность того, что канал свободен и не занят обслуживанием:
Тогда нетрудно получить выражение для вероятности определения вероятности занятости канала:
Вероятность р0(t) уменьшается с течением времени и в пределе при t→∞ стремится к величине