Смекни!
smekni.com

Некоторые задачи оптимизации в экономике (стр. 9 из 12)

Верна следующая теорема: если точка (

) является точкой условного экстремума функции f(x1,x2, …,хn) при условии g(x1,x2, …,хn)=0, то существует значение λi такие, что точка (
) является точкой экстремума функции L(
).

Рассмотрим метод Лагранжа для функции двух переменных.

L(x1,x2,λ)= f(x1,x2)+λg(x1,x2)

Таким образом, для нахождения условного экстремума функции f(x1,x2) при условии g(x1,x2)=0 требуется найти решение системы

L
=f
(x1,x2)+λg
(x1,x2)=0,
(3.18)

L

=f
(x1, x2) +λg
(x1, x2) =0,

L

= g(x1, x2) =0. [4]

Есть и достаточные условия, при выполнении которых решение (x1,x2) системы (3.18) определяет точку, в которой функция f достигает экстремума, для этого нужно вычислить значения

и составить определитель

=-
.

Если

<0, то функция имеет в точке (
)
условный максимум, если
>0 – то условный минимум.

Решим задачу методом множителей Лагранжа.

Общие издержки производства заданы функцией Т=0,5х2+0,6ху+0,4у2++700х+600у+2000, где х и у соответственно количество товаров А и В. Общее количество произведённой продукции должно быть равно 500 единиц. Сколько единиц товара А и В нужно производить, чтобы издержки на их изготовление были минимальными?

Решение: составим функцию Лагранжа.

L(x, y, λ) =0,5х2+0,6ху+0,4у2++700х+600у+2000+λ(х+у-500). Приравнивая к нулю её частные производные, получим

х+0,6у+700+ λ=0,

0,6х+0,8у+600+ λ=0,

х+у-500=0.

Решив систему, найдём (0, 500, -1000).

Воспользуемся достаточным условием для определения найденного значения L

(x0,y0)=1, L
(x0,y0)=0.8, L
(x0,y0)=0.6. Функция g= х+у-500. g
=1, g
=1.

=-(0·L
·L
+ g
·L
· g
+ g
·g
·L
- g
·L
·g
-0·L
·L
- g
· g
·L
)=0,6>0

Значит, в точке (0;500) функция L имеет условный минимум.

Ответ: Выгодно производить только 500 ед. товара В, а товар А не производить.

Наиболее простым способом нахождения условного экстремума функции двух переменных является сведение задачи к отысканию экстремума функции одной переменной. Пусть уравнениеg(x1,x2)=0 удалось разрешить относительно одной из переменных, например, выразить х2 через х1: х2=φ(х1). Подставив полученное выражение в функцию, получим y=f(x1,x2)= y=f(x1,φ(х1)), т.е. функцию одной переменной. Её экстремум и будет условным экстремумом функции y=f(x1,x2).

Проиллюстрируем данный метод на конкретной задаче.

Фирма реализует автомобили двумя способами: через розничную и оптовую торговлю. При реализации х1 автомобилей в розницу расходы на реализацию составляют (4 х1

) у. е., а при продаже х2 автомобилей оптом – х
у. е. Найти оптимальный способ реализации автомобилей, минимизирующий суммарные расходы, если общее число, предназначенных для продажи автомобилей составляет 200шт
.

Решение: Составим функцию L12)=4х1

и будем находить её минимум. Т.к. для продажи предназначено 200 автомобилей, то х12=200. Разрешим данной уравнение относительно переменной х2: х2=200-х1. Подставим полученное выражение в функцию L, получим L=4 х1+ х
+ (200- х1)2=2х
--396 х1+40000
, х1
0.

Найдём экстремум данной функции.

L
=4 х1-396.

Приравняв её к нулю, получим х1=99.

Ответ: оптимальный способ реализации автомобилей – это 99 автомобилей в розницу и 101 автомобиль оптом 2=200-99). Расходы составят 20398 р.

В экономических задачах, в которых отыскивается оптимум функции f =(x1,x2, …,хn), где n

2, полагают, что найденное единственное решение, удовлетворяющее необходимому условию экстремума, является оптимальным.

4. Задача потребительского выбора.

1) Функция полезности. Бюджетное ограничение. Формулировка задачи потребительского выбора.

Будем считать, что потребитель располагает доходом Q, который он полностью тратит на приобретение благ (продуктов) Учитывая структуру цен, доход и собственные предпочтения, потребитель приобретает определённое количество благ, и математическая модель такого его поведения называется моделью потребительского выбора.

В некоторых задачах выделяют один продукт, а вторым считают все остальные. Поэтому сначала рассмотрим модель с двумя видами продуктов. Потребительский набор – это вектор (x1,x2), координата x1 которого равна количеству единиц первого продукта, а координата x2 равна количеству единиц второго продукта.

Выбор потребителя характеризуется отношением предпочтения, суть которого состоит в следующем. Считается, что потребитель про каждые два набора может сказать, что либо один из них более желателен, чем другой, либо потребитель не видит между ними разницы. Отношение предпочтения транзитивно, т.е. если набор А=(а12) предпочтительнее набора B=(b1,b2), а набор B=(b1,b2) предпочтительнее набора С=(с12), то набор А=(а12) предпочтительнее набора С=(с12).