Смекни!
smekni.com

Оптимизационные методы решения экономических задач (стр. 2 из 4)

При условии, что

Член

вносит в данную задачу элемент ослабления, что, иначе говоря, обозначает жесткость заданного намерения. Весовой вектор w дает исследователю возможность достаточно точно выразить меру взаимосвязи между двумя целями. Например, установка весового вектора w как равного исходному намерению указывает на то, что достигнут тот же самый процент недо- или передостижимости цели
. Посредством установки в ноль отдельного весового коэффициента (т.е.
) можно внести жесткие ограничения в поставленную задачу. Метод достижения цели обеспечивает подходящую интуитивную интерпретацию поставленной исследовательской задачи и которая, в свою очередь, является вполне разрешимой с помощью стандартных процедур оптимизации.

3 Гладкая оптимизация.

Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Основная идея метода состоит в переходе от задачи на условный экстремум к задаче отыскания безусловного экстремума некоторой построенной функции Лагранжа. Пусть задана задача НП при ограничениях-равенствах вида

минимизировать

при ограничениях

Предположим, что все функции

– дифференцируемы. Введем набор переменных
(число которых равняется числу ограничений), которые называются множителями Лагранжа, и составим функцию Лагранжа такого вида:

Справедливо такое утверждение для того чтобы вектор

являлся решением задачи при ограничениях необходимо, чтобы существовал такой вектор
, что пара векторов удовлетворяла бы системе уравнений

множителей Лагранжа, который состоит из следующих шагов.

Составляют функцию Лагранжа

Находят частные производные

Решают систему уравнений

и отыскивают точки

, удовлетворяющие системе.

Найденные точки

дальше исследуют на максимум (или минимум).

Седловая точка и задача нелинейного программирования

Рассмотрим функцию Лагранжа

Определение Пара векторов

называется седловой точкой функции Лагранжа
, если при всех
выполняется условие

Неравенство называют неравенством для седловой точки. Очевидно, что в седловой точке выполняется условие

Между понятием седловой точки функции Лагранжа

и решением задачи НП существует взаимосвязь, которая устанавливается в следующей теореме.

Теорема. Пусть

и все
выпуклы и функции
удовлетворяют условию регулярности Слейтера. Вектор
является решением задачи НП тогда и только тогда, когда существует такой вектор
, что

Теорема Куна-Таккера. Пусть функции

, имеют непрерывные частные производные на некотором открытом множестве
, содержащем точку
. Если
является точкой минимума функции
при ограничениях
, удовлетворяющих условию регулярности в виде линейной независимости векторов
, то существуют такие неотрицательные множители Лагранжа
, что

Определим функцию Лагранжа следующим образом:

Тогда теорему Куна-Таккера можно записать в виде

Заметим, что множители Лагранжа

в задаче НП с ограничениями-равенствами являются знаконеопределенными, тогда как в теореме Куна-Таккера они должны быть положительными.

Каждой задаче линейного программирования соответствует двойственная задача. Двойственная задача по отношению к исходной задаче строится по следующим правилам:

· Если исходная задача ставится на максимум, то двойственная ставится на минимум и наоборот.

· Коэффициенты целевой функции исходной задачи становятся правыми частями ограничений двойственной задачи. Правые части ограничений исходной задачи становятся коэффициентами целевой функции двойственной задачи.

· Если A-матрица коэффициентов исходной задачи, то транспонированная матрица T A будет матрицей коэффициентов двойственной задачи.

· В задаче на максимум все ограничения имеют знак ≤ (=), а в задаче на минимум все ограничения имеют знак ≥ .

· Число переменных в двойственной задаче равно числу ограничений в исходной задаче. Каждому ограничению исходной задачи соответствует переменная двойственной задачи. Если ограничение исходной задач имеет знак (≥ ), то соответствующая переменная двойственной задачи неотрицательна. Если ограничение имеет знак (=), то соответствующая переменная двойственной задачи может принимать положительные и отрицательные значения и наоборот.

4 Выпуклая оптимизация. Условие выпуклости

Основная задача выпуклого программирования

Пусть задано выпуклое и замкнутое множество

. Рассмотрим множество

={
},
=(
,…,
),
Î

.