Смекни!
smekni.com

Понятие и классификация систем массового обслуживания (стр. 6 из 7)

Вычислим математическое ожидание:

После интегрирования по частям, получим:

.

Параметр

есть интенсивность потока заявок.

Формулу для розыгрыша

получим из уравнения (30), которое в данном случае запишется так:
.

Вычислив интеграл, стоящий слева, получим соотношение

. Отсюда, выражая
, получим:

(33)

Т.к. величина

распределена также как и
, следовательно, формулу (33) можно записать в виде:

(34)

7 Исследование системы массового обслуживания

7.1 Проверка гипотезы о показательном распределении

Исследуемое мной предприятие представляет собой двухканальную систему массового обслуживания с ограниченной очередью. На вход поступает пуассоновский поток заявок с интенсивностью λ. Интенсивности обслуживания заявок каждым из каналов μ, а максимальное число мест в очереди m.

Начальные параметры:

Время обслуживания заявок имеет эмпирическое распределение, указанное ниже и имеет среднее значение

.

Мной были проведены контрольные замеры времени обработки заявок, поступающих в данную СМО. Чтобы приступить к исследованию, необходимо установить по этим замерам закон распределения времени обработки заявок.

Таблица 6.1 – Группировка заявок по времени обработки

Количество заявок 22 25 23 16 14 10 8 4
Время обработки, мин 0–5 5–10 10–15 15–20 20–25 25–30 30–35 35–40

Выдвигается гипотеза о показательном распределении генеральной совокупности.

Для того чтобы, при уровне значимости

проверить гипотезу о том, что непрерывная случайная величина распределена по показательному закону, надо:

1) Найти по заданному эмпирическому распределению выборочную среднюю

. Для этого, каждый i – й интервал заменяем его серединой
и составляем последовательность равноотстоящих вариант и соответствующих им частот.

2) Принять в качестве оценки параметра λ показательного распределения величину, обратную выборочной средней:

3) Найти вероятности попадания X в частичные интервалы по формуле:

4) Вычислить теоретические частоты:

,

где

- объем выборки

5) Сравнить эмпирические и теоретические частоты с помощью критерия Пирсона, приняв число степеней свободы

, где S – число интервалов первоначальной выборки.

Таблица 6.2 – Группировка заявок по времени обработки с усредненным временным интервалом

Количество заявок 22 25 23 16 14 10 8 4
Время обработки, мин 2,5 7,5 12,5 17,5 22,5 27,5 32,5 37,5

Найдем выборочную среднюю:

2) Примем в качестве оценки параметра λ экспоненциального распределения величину, равную

. Тогда:

(
)

3) Найдем вероятности попадания X в каждый из интервалов по формуле:

Для первого интервала:


Для второго интервала:

Для третьего интервала:

Для четвертого интервала:

Для пятого интервала:

Для шестого интервала:

Для седьмого интервала:

Для восьмого интервала:

4) Вычислим теоретические частоты:


Результаты вычислений заносим в таблицу. Сравниваем эмпирические

и теоретические
частоты с помощью критерия Пирсона.

Для этого вычислим разности

, их квадраты, затем отношения
. Суммируя значения последнего столбца, находим наблюдаемое значение критерия Пирсона. По таблице критических точек распределения
при уровне значимости
и числу степеней свободы
находим критическую точку

Таблица 6.3 – Результаты вычислений

i
1 22 0,285 34,77 -12,77 163,073 4,690
2 25 0,204 24,888 0,112 0,013 0,001
3 23 0,146 17,812 5,188 26,915 1,511
4 16 0,104 12,688 3,312 10,969 0,865
5 14 0,075 9,15 4,85 23,523 2,571
6 10 0,053 6,466 3,534 12,489 1,932
7 8 0,038 4,636 3,364 11,316 2,441
8 4 0,027 3,294 0,706 0,498 0,151
122

Т.к.

, то нет оснований отвергнуть гипотезу о распределении X по показательному закону. Другими словами, данные наблюдений согласуются с этой гипотезой.

7.2 Расчет основных показателей системы массового обслуживания

Данная система представляет собой частный случай системы гибели и размножения.

Граф данной системы:

Рисунок 10 – Граф состояний исследуемой СМО

Поскольку все состояния являются сообщающимися и существенными, то существует предельное распределение вероятностей состояний. В стационарных условиях поток, входящий в данное состояние должен быть равен потоку, выходящему из данного состояния.

(1)

Для состояния S0:

Следовательно: