Содержание
Введение........................................................................................................... 3
1 Марковские цепи с конечным числом состояний и дискретным временем 4
2 Марковские цепи с конечным числом состояний и непрерывным временем 8
3 Процессы рождения и гибели.................................................................... 11
4 Основные понятия и классификация систем массового обслуживания... 14
5 Основные типы открытых систем массового обслуживания.................... 20
5.1 Одноканальная система массового обслуживания с отказами.............. 20
5.2 Многоканальная система массового обслуживания с отказами........... 21
5.3 Одноканальная система массового обслуживания с ограниченной длиной очереди........................................................................................................................ 23
5.4 Одноканальная система массового обслуживания с неограниченной очередью........................................................................................................................ 26
5.5 Многоканальная система массового обслуживания с ограниченной очередью........................................................................................................................ 27
5.6 Многоканальная система массового обслуживания с неограниченной очередью........................................................................................................................ 30
5.7 Многоканальная система массового обслуживания с ограниченной очередью и ограниченным временем ожидания в очереди............................................. 32
6 Метод Монте-Карло................................................................................... 36
6.1 Основная идея метода............................................................................. 36
6.2 Разыгрывание непрерывной случайной величины................................ 36
6.3 Случайная величина с экспоненциальным распределением................. 38
7 Исследование системы массового обслуживания..................................... 40
7.1 Проверка гипотезы о показательном распределении............................ 40
7.2 Расчет основных показателей системы массового обслуживания........ 45
7.3 Выводы о работе исследуемой СМО..................................................... 50
8 Исследование видоизмененной СМО........................................................ 51
Заключение.................................................................................................... 53
Список использованных источников............................................................ 54
Темой моей дипломной работы является исследование системы массового обслуживания. В своем изначальном состоянии рассматриваемая мной СМО представляет собой один из классических случаев, а конкретно M/M/2/5 по принятому обозначению Кэндалла. После исследования системы были сделаны выводы о неэффективности ее работы. Были предложены методы оптимизации работы СМО, но с этими изменениями система перестает быть классической. Основная проблема при исследовании систем массового обслуживания заключается в том, что в реальности они могут быть исследованы с использованием классической теории массового обслуживания только в редких случаях. Потоки входящих и исходящих заявок могут оказаться не простейшими, следовательно, нахождение предельных вероятностей состояний с использованием системы дифференциальных уравнений Колмогорова невозможно, в системе могут присутствовать приоритетные классы, тогда расчет основных показателей СМО также невозможен.
Для оптимизации работы СМО была введена система из двух приоритетных классов и увеличено число обслуживающих каналов. В таком случае целесообразно применить методы имитационного моделирования, например метод Монте-Карло. Основная идея метода заключается в том, что вместо неизвестной случайной величины принимается ее математическое ожидание в достаточно большой серии испытаний. Производится разыгрывание случайной величины (в данном случае это интенсивности входящего и исходящего потоков) изначально равномерно распределенной. Затем осуществляется переход от равномерного распределения к показательному распределению, посредством формул перехода. Была написана программа на языке VisualBasic, реализующая этот метод.
Пусть некоторая система S может находиться в одном из состояний конечного (или счетного) множества возможных состояний S1, S2,…, Sn, а переход из одного состояния в другое возможен только в определенные дискретные моменты времени t1, t2, t3, называемые шагами.
Если система переходит из одного состояния в другое случайно, то говорят, что имеет место случайный процесс с дискретным временем.
Случайный процесс называется марковским, если вероятность перехода из любого состояния Si в любое состояние Sj не зависит от того, как и когда система S попала в состояние Si (т.е. в системе S отсутствует последствие). В таком случае говорят, что функционирование системы S описывается дискретной цепью Маркова.
Переходы системы S в различные состояния удобно изображать с помощью графа состояний (рис. 1).
Рисунок 1 – Пример размеченного графа состояний
Вершины графа S1, S2, S3 обозначают возможные состояния системы. Стрелка, направленная из вершины Si в вершину Sj обозначает переход
; число, стоящее рядом со стрелкой, обозначает величину вероятности этого перехода. Стрелка, замыкающаяся на i-той вершине графа, обозначает, что система остается в состоянии Si с вероятностью, стоящей у стрелки.Графу системы, содержащему n вершин, можно поставить в соответствие матрицу NxN, элементами которой являются вероятности переходов pij между вершинами графа. Например, граф на рис. 1 описывается матрицей P:
называемой матрицей вероятностей переходов. Элементы матрицы pij удовлетворяют условиям:
(1) (2)Элементы матрицы pij – дают вероятности переходов в системе за один шаг. Переход
Si– Sj за два шага можно рассматривать как происходящий на первом шаге из Si в некоторое промежуточное состояние Sk и на втором шаге из Sk в Si. Таким образом, для элементов матрицы вероятностей переходов из Si в Sj за два шага получим:
В общем случае перехода
за m шагов для элементов матрицы вероятностей переходов справедлива формула:Получим два эквивалентных выражения для
:Пусть система S описывается матрицей вероятностей переходов Р:
Если обозначить через Р(m) матрицу, элементами которой являются рi вероятности переходов из Si в Sj за m шагов, то справедлива формула
,где матрица Рm получается умножением матрицы P саму на себя m раз.
Исходное состояние системы характеризуется вектором состояния системы Q(qi) (называемым также стохастическим вектором).
где qj- вероятность того, что исходным состоянием системы является Sj состояние. Аналогично (1) и (2) справедливы соотношения
Обозначим через
вектор состояния системы после m шагов, где qj– вероятность того, что после m шагов система находится в Si состоянии. Тогда справедлива формула
Если вероятности переходов Pij остаются постоянными, то такие марковские цепи называются стационарными. В противном случае марковская цепь называется нестационарной.
Если система S может переходить в другое состояние случайным образом в произвольный момент времени, то говорят о случайном процессе с непрерывным временем. В отсутствии последействия такой процесс называется непрерывной марковской цепью. При этом вероятности переходов
для любых i и j в любой момент времени равны нулю (в силу непрерывности времени). По этой причине вместо вероятности перехода вводится величина - плотность вероятности перехода из состояния в состояние , определяемая как предел:Если величины
не зависят от t, то марковский процесс называется однородным. Если за время система может изменить свое состояние не более чем один раз, то говорят, что случайный процесс является ординарным. Величину называют интенсивностью перехода системы из Si в Sj. На графе состояний системы численные значения ставят рядом со стрелками, показывающими переходы в вершины графа.