1.3 Применение производной к исследованию функций
Очень часто при решении экономических задач возникает необходимость принять решение на основе исследования и анализа функций спроса, предложения, издержек, прибыли и т.д. При этом удобно пользоваться дифференциальным исчислением.
1. Возрастание/убывание функции
Если дифференцируемая функция y=f(х), х возрастает на интервале то f'(x0) для любого х0
Если дифференцируемая функция y=f(х), х убывает на интервале то f'(x0) для любого х0
2. Экстремумы функции
Точка х0 из области определения функции f(х) называется точкой минимума этой функции, если найдётся такая
- окрестность точки х0, что для всех из этой окрестности выполняется неравенство f(х)> f(х0).Точка х0 из области определения функции f(х) называется точкой максимума этой функции, если найдётся такая
- окрестность точки х0, что для всех из этой окрестности выполняется неравенство f(х)< f(х0).Точки минимума и максимума называются точками экстремума, а значения функции в этих точках называются экстремумами функции.
Необходимые условия существования экстремума даёт теорема Ферма:
Пусть функция y = f(x) определена на интервале (a, b) и в некоторой точке x0 этого интервала принимает наибольшее или наименьшее значение. Тогда возможны только два случая:
1) производная функции f'(x0) не существует;
2) f'(x0)=0.
Точки, в которых производная функции обращается в нуль или не существует, называются критическими точками (первого рода). Экстремум функции, если он существует, может быть только в критических точках. Однако не во всякой критической точке функция имеет экстремум. Поэтому, чтобы выяснить, в каких точках функция имеет экстремум, необходимо знать достаточные условия существования экстремума.
Первое достаточное условие экстремума. Пусть функция y=f(х) непрерывна в точке х0и в некоторой её
- окрестности имеет производную, кроме, быть может, самой точки х0. Тогда:1) если производная f'(x) при переходе через точку х0меняет знак с плюса на минус, то х0является точкой максимума.
2) если производная f'(x) при переходе через точку х0меняет знак с минуса на плюс, то х0является точкой минимума.
3) если производная при переходе через точку х0не меняет знак, то в точке х0функция f(x) не имеет экстремума.
Второе достаточное условие экстремума. Если функция y=f(х) определена и дважды дифференцируема в некоторой окрестности точки х0, причём f'(x0)=0, а f''(x0) 0, то в точке х0функция f(х) имеет максимум, если f''(x0)<0, и минимум, если f''(x0)>0.
3. Выпуклость графика функции
График функции y=f(х), х (a,b) называется выпуклым вверх (вогнутым вниз) на интервале (a,b), если график расположен ниже (точнее не выше) любой своей касательной. Сама функция f(х) также называется выпуклой вверх (вогнутой вниз).
График функции y=f(х), х (a,b) называется выпуклым вниз (вогнутым вверх) на интервале (a,b), если график расположен выше (точнее не ниже) любой своей касательной. Сама функция f(х) также называется выпуклой вниз (вогнутой вверх).
На интервале выпуклости вверх (вогнутости вниз) производная функции убывает. На интервале выпуклости вниз (вогнутости вверх) производная f'(x) возрастает.
Достаточное условие выпуклости графика функции. Если на интервале (a,b) дважды дифференцируемая функция y=f(х), х (a,b) имеет отрицательную (положительную) производную второго порядка, то график функции является выпуклым вверх (вниз).
Исследовать на выпуклость график функции y=f(х) означает найти те интервалы из области её определения, в которых вторая производная f''(x) сохраняет свой знак. Необходимо заметить, что f''(x) может менять свой знак лишь в точках, где f''(x)=0 или не существует. Такие точки принято называть критическими точками второго рода.
2. Экономический смысл понятия производной
2.1 Предельные величины
Если спросить экономиста “Что такое производная?”, то он ответит: «маржинализм». Слово «маржинализм» охватывает целый комплекс понятий в современной экономической науке.
В ХIХ в. в области экономической теории произошло событие, которое впоследствии привело к подлинному перевороту в методах экономического поведения людей или фирм, изменило характер научно-экономического мышления. Классическая наука обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход к анализу экономических процессов и явлений. Во второй половине ХIХ в. была сформулирована теория маржинализма. Классиками этой теории стали экономисты австрийской школы К. Менгер (1840-1921), Ф. фон Визер (1851-1926), Е. фон Бём-Баверк (1851-1914), а также английский экономист У.С. Джевонс (1835-1882).
"Marginal" в переводе с английского языка означает "находящийся на самом краю", "предельный", "граничный". К предельным величинам в экономике относятся: предельные издержки, предельный доход, предельная полезность, предельная производительность, предельная склонность к потреблению и т.д. Понятие предельных величин позволило создать совершенно новый инструмент исследования и описания экономических явлений, посредством которого стало возможно решать научные проблемы, прежде не решённые или решённые неудовлетворительно. Все эти величины самым тесным образом связаны с понятием производной. Предельные величины характеризуют не состояние (как суммарная или средняя величины), а процесс, изменение экономического объекта. Следовательно, производная выступает как скорость изменения некоторого экономического объекта (процесса) с течением времени или относительно другого исследуемого фактора.
Конечно, экономика не всегда позволяет использовать предельные величины в силу неделимости многих экономических расчетов, а также прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно эффективно использовать предельные величины.
Рассмотрим ситуацию: пусть q – количество произведённой продукции, ТC(q) – соответствующие данному выпуску совокупные издержки (total costs), тогда Dq – прирост продукции, а DТС – прирост издержек производства.
Предельные издержки МС (marginal costs) выражают дополнительные затраты на производство каждой дополнительной единицы продукции. Другими словами,
где
Используя равенство получимИтак, предельные издержки есть не что иное, как первая производная от совокупных издержек, если последние представлены как функция от выпускаемого количества продукции.
Аналогичным образом определяются и многие другие экономические величины, имеющие предельный характер.
Предельная выручка MR (marginal revenue) – это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта. Она представляет собой первую производную от выручки: