Министерство образования и науки Украины
Донецкий национальный технический университет
РЕФЕРАТ
по высшей математике
на тему:
«Производная и ее применение в экономической теории»
Донецк – 2008
Вступление
Современный экономист должен хорошо владеть количественными методами анализа. К такому выводу нетрудно прийти практически с самого начала изучения экономической теории. При этом важны как знания традиционных математических курсов (математический анализ, линейная алгебра, теория вероятностей), так и знания, необходимые непосредственно в практической экономике и экономических исследованиях (математическая и экономическая статистика, теория игр, эконометрика и др.).
Математика является не только орудием количественного расчета, но также методом точного исследования. Она служит средством предельно четкой и ясной формулировки экономических понятий и проблем.
Ф.Энгельс в своё время заметил, что "лишь дифференциальное исчисление даёт естествознанию возможность изображать математически не только состояния, но и процессы: движение". Поэтому целью моей работы является выяснить, каков экономический смысл производной,какие новые возможности для экономических исследований открывает дифференциальное исчисление, а также исследовать применение производной при решении различных видов задач по экономической теории.
1.Определение производной
Пусть функция y=f(х) определена в некоторой окрестности точки х0. Для любой точки х из этой окрестности приращение Dx определяется формулой Dx=х – х0, откуда х=х0+Dx.
Приращением функции y=f(x) в точке х0 называется разность
Dу=f(x) – f(x0)=f(x0+Dx) – f(x0).
Производной от функции у=f(x) в точке х0 называется предел отношения приращения функции к приращению аргумента (
Производная функции у=f(x) в точке х0 обозначается y'(х0) или f'(х0). Определение производной можно записать в виде формулы:
Если функция в точке х0 имеет конечную производную, то она называется дифференцируемой в точке х0. Если она дифференцируема во всех точках промежутка X, то говорят, она дифференцируема на всём этом промежутке.
Конечно,
1.1 Геометрический смысл понятия производной
Пусть на плоскости x0y дана непрерывная кривая y=f(x)(см. рис. 1).
Рассмотрим на графике кривой точки Mo(xo;f(xo)) и M1(xo+Dx; f(xo+Dx)). Проведем секущую MoM1. Пусть
Пусть N(xo+Dx; f(xo)) – точка, дополняющая отрезок MoM1до прямоугольного треугольника MoM1N. Так как сторона MoN параллельна оси 0х, то
Переходя к пределу в левой и правой частях этого равенства при Dx→0, получим
Поэтому геометрический смысл производной состоит в том, что f’(x0) – это тангенс угла наклона (угловой коэффициент) касательной к графику y=f(х) в точке (xo; f(xo)).
Найдём уравнение касательной к графику в точке Mo(xo; f(xo)) в виде y=kx+b. Так как Mo
y=kx+f(x0) – kx0=f(x0)+k(x – x0).
Поскольку k=f'(x0), то уравнение касательной имеет вид
y=f(x0)+f'(x0)(x – x0).
Как вычисляют производную?
1. Записывают функцию в виде y=f(х).
2. Вычисляют Dy – приращение функции: Dу=f(x+Dx) – f(x).
3. Составляют отношение
4. Представляют, что Dx стремится к нулю, и переходят к пределу
5. Вычисляют производную в точке х0: y'(х)
Операция вычисления производной называется дифференцированием.
Примеры дифференцирования:
1.
Dy=a(x+Dx)2 – ax2=2axDx+aDx2;
2.
3.
1.2 Дифференциал функции
Дифференциалом функции f(х) в точке х0называется линейная функция приращения
Дифференциал функции y=f(х) обозначается dy или df(x0). Главное назначение дифференциала состоит в том, чтобы заменить приращение
Наличие конечной производной
где