Смекни!
smekni.com

Расчет коэффициента эластичности и показателей корреляции и детерминации (стр. 3 из 3)

Yt = a2 + b21Rt + b23It + b25Gt + e2

It = a3 + b31Rt + e3

Сt = Yt + It + Gt

Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.

Модель включает четыре эндогенные переменные (Rt, Yt, It, Сt) и две предопределенные переменные (

и
).

Проверим необходимое условие идентификации для каждого из уравнений модели.

Первое уравнение:

Rt = a1 + b12Yt + b14Mt + e1.

Это уравнение содержит две эндогенные переменные

и
и одну предопределенную переменную
. Таким образом,

,

т.е. выполняется условие

. Уравнение сверхидентифицируемо.

Второе уравнение:

Yt = a2 + b21Rt + b23It + b25Gt + e2.

Оно включает три эндогенные переменные Yt, Itи Rt и одну предопределенную переменную Gt. Выполняется условие


.

Уравнение идентифицируемо.

Третье уравнение:

It = a3 + b31Rt+ e3.

Оно включает две эндогенные переменные Itи Rt. Выполняется условие

.

Уравнение идентифицируемо.

Четвертое уравнение:

Сt = Yt+ It+ Gt.

Оно представляет собой тождество, параметры которого известны. Необходимости в идентификации нет.

Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.

Rt
I уравнение 0 0 –1 b12 b14 0
II уравнение 0 b23
–1 0 b25
III уравнение 0 –1 b31 0 0 0
Тождество –1 1 0 1 0 1

В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.

Первое уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

Rt
II уравнение b23
–1 b25
III уравнение –1 b31 0 0
Тождество 1 0 1 1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы

не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Второе уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

Rt
I уравнение 0 0 –1 b12 b14 0
III уравнение 0 -1 b31 0 0 0
Тождество –1 1 0 1 0 1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы

не равен нулю:

.

Достаточное условие идентификации для данного уравнения выполняется.

Третье уравнение. Матрица коэффициентов при переменных, не входящих в уравнение, имеет вид

Rt
I уравнение 0 0 –1 b12 b14 0
II уравнение 0 b23
–1 0 b25
Тождество -1 1 0 1 0 1

Ранг данной матрицы равен трем, так как определитель квадратной подматрицы

не равен нулю:

Достаточное условие идентификации для данного уравнения выполняется.

Таким образом, все уравнения модели сверхидентифицируемы. Приведенная форма модели в общем виде будет выглядеть следующим образом:


Rt = a1 + b11Yt + b13Mt + b15Gt + b16Gt + u1

Yt = a2 + b21Rt + b23It + b25Gt + b26Gt + u 2

It = a3 + b31Rt + b33It + b35Gt + b36Gt + u 3

Сt = a4 + b41Rt + b43It + b45Gt + b46Gt + u 4

Задача 26

Имеются данные об урожайности культур в хозяйствах области:

Варианты Показатели Год
1 2 3 4 5 6 7 8
4 Урожайность картофеля, ц/га 63 64 69 81 84 96 106 109

Задание:

1. Обоснуйте выбор типа уравнения тренда.

2. Рассчитайте параметры уравнения тренда.

3.Дайте прогноз урожайности культур на следующий год.

Решение:

1. Обоснуйте выбор типа уравнения тренда.

Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравнивание временного ряда. Для этого применяют следующие функции:

- линейная

- гипербола

- экспонента

- степенная функция

- парабола второго и более высоких порядков

Параметры трендов определяются обычными МНК, в качестве независимой переменной выступает время t=1,2,…,n, а в качестве зависимой переменной – фактические уровни временного ряда yt. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации

.


Сравним значения R2 по разным уровням трендов:

Полиномиальный 6-й степени - R2= 0,994

Экспоненциальный - R2= 0,975

Линейный - R2= 0,970

Степенной - R2= 0,864

Логарифмический - R2= 0,829

Исходный данные лучше всего описывает полином 6-й степени. Следовательно, для расчета прогнозных значений следует использовать полиномиальное уравнение.

2. Рассчитайте параметры уравнения тренда.

y = - 0,012*531441 + 0,292*59049 – 2,573*6561 +10,34*729 – 17,17*81 + 9,936*9 + 62,25 =

= - 6377,292 + 17242,308 – 16881,453 + 7537,86 - 1390,77 + 89,424 + 62,25 = 282,327

3.Дайте прогноз урожайности культур на следующий год.

Урожайность картофеля, ц/га в 9-ом году приблизительно будет 282 ц/га.