Внутрення непротиворечивость предпосылок модели проверяется также путем сравнения друг с другом получаемых с ее помощью следствий, а также со следствиями "конкурирующих" моделей.
Оценивая современное состояние проблемы адекватности математических моделей экономике, следует признать, что создание конструктивной комплексной методики верификации моделей, учитывающей как объективные особенности моделируемых объектов, так и особенности их познания, по-прежнему является одной из наиболее актуальных задач экономико-математических исследований.
Рассмотрим общую постановку задачи оптимизации экономических систем. Пусть имеется система, состояние которой может измениться в результате некоторого количества управляющих воздействий. Задавая эти воздействия, можно получить определенный процесс изменения состояния системы. При этом возникают две задачи: первая предполагает выбор таких воздействий на систему, чтобы происходящий процесс удовлетворял заданным условиям, такие процессы принято называть допустимыми), вторая задача - выбор из этого множества допустимых процессов наилучшего (оптимального) процесса.
Чтобы решать оптимизационные задачи с помощью математических методов, нужно сформулировать на математическом языке рассматриваемые процессы, ограничения, накладываемые на состояние системы и управляющие воздействия, а так же записать математические модели, описывающие эти процессы.
Введем некоторые понятия и обозначения. Рассмотрим множество М с элементами v , где v - пары вида v=(x, у), , , - некоторые заданные множества. Проекцией множества М на множество Х назовем подмножество Мx, обладающее тем свойством, что для каждого существует такой элемент , что пара содержится в множестве М.
Введем понятие сечения Мx множества М при данном x. Сечением Мx будем называть множество всех y, при которых пара принадлежит множеству М.
Введем понятие функционала, являющегося одним из главных в задачах оптимального управления. Будем говорить, что на множестве М задан функционал F , если известно правило, которое каждому элементу ставит в соответствие определенное действительное число F(v).
В общем виде задача оптимизации формулируется как задача отыскания минимального (или максимального) значения функционала F(v) на множестве М.
Предположим, что требуется минимизировать функционал F(v) на множестве М. Если решение этой задачи существует (обозначим его через ), то называется оптимальным элементом множества M, а величина - оптимальным значением функционала. Решения поставленной задачи F и будем записывать следующим образом:
.
Аналогично формулируется задача о нахождении максимального значения функционала.
Введем понятия точной нижней и верхней границы функционала. Точной нижней границей функционала на множестве М назовем такое число т, если:
1) для любого ;
2) существует последовательность , на которой .
Точная нижняя граница функционала обозначается
.
Последовательность {vs} называется минимизирующей последовательностью.
Точно так же определяется точная верхняя граница n функционала :
Назовем функционал ограниченным снизу (сверху) на множестве М, если существует такое число A, что при всех ( ). Если функционал является ограниченным снизу (сверху), то решение задачи о нахождении его точной нижней (верхней) границы существует, т. е. имеет место следующая теорема (приведем без доказательства): Пусть на множестве М задан ограниченный снизу функционал . Тогда реализуется одна из двух возможностей:
1) Существуют элемент и число , при которых и при всех .
2) Существуют последовательность элементов множества М и число , удовлетворяющее условиям , и при всех .
Данная теорема имеет важное значение для понимания сущности задачи оптимизации по двум причинам. Во-первых, она говорит о том, что постановка задачи об отыскании наименьшего (наибольшего) значения ограниченного снизу (сверху) функционала имеет смысл. Во-вторых, она объясняет природу решения такой задачи. А именно: решением будет либо определенный элемент множества М, минимизирующий (максимизирующий) функционал , либо последовательность элементов множества М, являющаяся минимизирующей (максимизирующей) последовательностью. В первом случае можно говорить о точном решении задачи, а во втором - о приближенном.
Задачи оптимизации управляемых процессов (оптимального управления) являются частными по отношению к сформулированной выше общей задаче оптимизации. Рассмотрим постанову задач оптимального управления.
Введем некоторые понятия.
Важнейшими из них являются понятия состояния системы и управления. Будем рассматривать системы, состояние которых может быть в любой момент времени определено вектором х n-мерного пространства с координатами . Пространство Х будем называть пространством состояний системы.
Так как система изменяется во времени, то ее поведение можно описать последовательностью состояний. Такую последовательность системы называют ее траекторией.
Переменная t (называется аргументом процесса) может быть некоторым отрезком числовой прямой ( ) или отрезком натурального ряда ( ). В первом случае процесс, происходящий в системе, называется непрерывным, во втором случае - многошаговым, а системы - соответственно непрерывными и дискретными.