Смекни!
smekni.com

Корреляционный анализ (стр. 3 из 5)

Определяем критические значения для полученного коэффициента корреляции по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как f = n – 2 = 8. rкрит=0,72 > 0,54 , следовательно, гипотеза Н1 отвергается и принимается гипотеза H0, иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана[1].

1.7Коэффициент ранговой корреляции Спирмена

Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена (

):

где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то

= -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi.

Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений xi и yi совпадают и

= 1; если зависимость монотонно убывающая, то ранги обратны и
= –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления

необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы
, учитывая, что
всегда равна нулю. Затем, вычислив значение
, необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если
, то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если
, то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

- если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента

при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

- когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

yi, кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

Решение

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:

где: dx и dy — ранги показателей х и у;

n — число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

Таблица 2 – Данные тестирования

xi dx yi dy
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0
= 186,5

Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции(rф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.

Вывод:

1) т.к. rф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;

2) т.к. rф = -0,13 < rst = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.

1.8Основные свойства коэффициентов корреляции

К основным свойствам коэффициента корреляции необходимо отнести следующие:

- коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;

- значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от —1 до +1, т.е. -1 < r < 1;

- при независимом варьировании признаков, когда связь между ними отсутствует, r= 0;

- при положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;

- при отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;