Находим:
Условия проверки однородности дисперсий по критерию Кохрена:
2.5 Коэффициенты уравнения регрессии
Находим коэффициенты уравнения регрессии.
.Находим:
Следовательно, уравнение регрессии примет вид:
2.6 Дисперсия воспроизводимости
Вычисляем значение дисперсии воспроизводимости по формуле:
2.7 Проверка значимости коэффициентов уравнения регрессии
Проверяем значимость коэффициентов уравнения регрессии по критерию Стьюдента:
гдеУсловие значимости
Для уровня значимости α = 0,05 и числа степеней свободы f = N - 1 =8 - 1 = 7 находим табличное значение критерия СтьюдентаСравниваем расчетное значение с табличным и видим, что значение
незначительные и их коэффициенты следует исключить из уравнения регрессии. Так как коэффициенты получились незначимы и мы не имеем возможности заново поставить новый эксперимент и продолжаем вычисления, выбрав наиболее близкие к значимым коэффициенты.Уравнение регрессии примет вид:
2.8 Проверка адекватности уравнения регрессии
Для проверки используется критерий Фишера:
где d – количество коэффициентов уравнения регрессии.
Находим значения
:Найдем значение
Находим табличное значение критерия Фишера для степеней свободы
Сравниваем условие
< , значит, модель адекватна.Выводы:
- Уравнение регрессии имеет вид:
- Анализ значимости коэффициентов уравнении регрессии показал, что влияние всех факторов незначимо.
- Модель адекватна, так как критерий адекватности меньше табличного.
- Измерения в различных серий равноточны.
ЗАКЛЮЧЕНИЕ
Термин «корреляция» был введен в науку выдающимся английским естествоиспытателем Френсисом Гальтоном в 1886 году. Однако точную формулу для подсчета коэффициента корреляции разработал его ученик Карл Пирсон.
Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.
Обычно оптимизируется одна функция, наиболее важная с точки зрения цели исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого и используется корреляционный анализ.
С использованием результатов корреляционного анализа исследователь может делать определённые выводы о наличии и характере взаимозависимости, что уже само по себе может представлять существенную информацию об исследуемом объекте. Результаты могут подсказать и направление дальнейших исследований, и совокупность требуемых методов, в том числе статистических, необходимых для более полного изучения объекта[7].
Особенно реальную пользу применение аппарата корреляционного анализа может принести на стадии ранних исследований в областях, где характеры причин определённых явлений ещё недостаточно понятны. Это может касаться изучения очень сложных систем различного характера: как технических, так и социальных.
СПИСОК ЛИТЕРАТУРЫ
1 Сидоренко Е.В. Методы математической обработки в психологии. Спб.: ООО «Речь», 2000. – 350 с.
2 Лекция на тему: "Корреляционный анализ''// www.kgafk.ru, 2006, 8 с.
3 Ковалев В.В, Волкова О.Н., Анализ хозяйственной деятельности предприятия//polbu.ru, 2005, 2 с.
4 Поляков Л.Е., Коэффициент ранговой корреляции Спирмена//www.eduhmao.ru, 1971, 2 с.
5 Бондарь А.Г., Статюха Г.А. Планирование эксперимента в химической технологии. Киев: Высшая школа, 1976 – 335 с.
6 Адлер Ю.П., Грановский Ю.В., Маркова Е.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976.–278 с.
7 Андерсон Т., Введение в многомерный статистический анализ//www.ami.nstu.ru, 1963, 24 с.