Смекни!
smekni.com

Линейное программирование как метод оптимизации (стр. 2 из 4)

Задача ЛП в канонической форме:


(2.1)

(2.2)

(2.3)

Задача ЛП в стандартной форме:

В обоих случаях А есть матрица размерности m x n, i-я строка которой совпадает с вектором аi.

Задача ЛП в общей форме сводится (в определенном смысле) к задаче ЛП в канонической (стандартной) форме. Под этим понимается существование общего способа построения по исходной задаче (в общей форме) новой задачи ЛП (в нужной нам форме), любое оптимальное решение которой "легко" преобразуется в оптимальное решение исходной задачи и наоборот. (Фактически, связь между этими задачами оказывается еще более тесной). Тем самым мы получаем возможность, не теряя общности, заниматься изучением задач ЛП, представленных либо в канонической, либо в стандартной форме. Ввиду этого наши дальнейшие рассмотрения задач ЛП будут посвящены, главным образом, задачам в канонической форме.

2. Приведение задачи линейного программирования к стандартной форме

Любая задача линейного программирования приводится к стандартной (канонической) форме основной задачи линейного программирования, которая формулируется следующим образом: найти неотрицательные значения переменных X1, X2, Xn, удовлетворяющих ограничениям в виде равенств:

A11X1 + A12X2 + … + A1nXn = B1;

A21X1 + A22X2 + … + A2nXn = B2;

……………………………………

Am1X1 + Am2X2 + … + AmnXn = Bm;

Xj≥ 0, j=1,…,n

и обращающих в максимум линейную функцию этих переменных:

E= C1X1 + C2X2 + … + CnXnÞmax

При этом также требуется, чтобы правые части равенств были неотрицательны, т.е. должны соблюдаться условия:

Bj≥ 0, j=1,…,n

Приведение к стандартной форме необходимо, так как большинство методов решения задач линейного программирования разработано именно для стандартной формы. Для приведения к стандартной форме задачи линейного программирования может потребоваться выполнить следующие действия:

перейти от минимизации целевой функции к ее максимизации;

изменить знаки правых частей ограничений;

перейти от ограничений-неравенств к равенствам;

избавиться от переменных, не имеющих ограничений на знак.

Для решения нашей задачи воспользуемся симплекс-методом, так как этот метод предназначен для решения задач линейного программирования любой размерности.

3. Примеры экономических задач, приводящихся к задачам ЛП

Несмотря на требование линейности функций критериев и ограничений, в рамки линейного программирования попадают многочисленные задачи распределения ресурсов, управления запасами, сетевого и календарного планирования, транспортные задачи и прочие.

Рассмотрим некоторые из них.

Определение оптимального ассортимента. Имеются m видов ресурсов в количествах b1, b2,., bi, bm и n видов изделий. Задана матрица A=||aij||, i=1,.,m, j=1,.,n, где aij характеризует нормы расхода i-го ресурса на единицу j-го вида изделий. Эффективность производства j-го вида изделий характеризуется показателем Cj, удовлетворяющим условию линейности. Нужно определить такой план выпуска изделий (оптимальный ассортимент), при котором суммарный показатель эффективности будет наибольший.

Обозначим количество единиц k-го вида изделий, выпускаемых предприятием, через xk,

. Тогда математическая модель этой задачи будет иметь такой вид:

(3.1)

при ограничениях

(3.2)

Кроме ограничений на ресурсы (3.2) в эту модель можно ввести дополнительные ограничения на планируемый уровень выпуска продукции

, xi: xj: xk = bi: bj: bk для всех i, j, k и т.д.

Оптимальное распределение взаимозаменяемых ресурсов. Имеются m видов взаимозаменяемых ресурсов а1, а2,., аm, используемых при выполнении n различных работ (задач). Объемы работ, которые должны быть выполнены, составляют b1, b2,., bi, bn единиц. Заданы числа

, указывающие, сколько единиц j-й работы можно получить из единицы і-го ресурса, а также Cij - затраты на производство j-й работы из единицы i-го ресурса. Требуется распределить ресурсы по работам таким образом, чтобы суммарная эффективность выполненных работ была максимальной (или суммарные затраты - минимальными).

Данная задача называется общей распределительной задачей. Количество единиц i-го ресурса, которое выделено на выполнение работ j-го вида, обозначим через xij.

Математическая модель рассматриваемой задачи такова:

(3.3)

при ограничениях

(3.4)

(3.5)

Ограничение (3.4) означает, что план всех работ должен быть выполнен полностью, а (3.5) означает, что ресурсы должны быть израсходованы целиком.

Примером этой задачи может быть задача о распределении самолетов по авиалиниям.

Задача о смесях. Имеется р компонентов, при сочетании которых в разных пропорциях получают разные смеси. Каждый компонент, а следовательно и смесь, содержит q веществ. Количество k-го вещества k = 1, 2,., q, входящее в состав единицы і-го компонента и в состав единицы смеси, обозначим через аik и аk соответственно.

Предположим, что аk зависит от аik линейно, то есть если смесь состоит из x1 единиц первого компонента, x2 - единицу второго компонента и т.д., то

Задано р величин Ci, характеризующих стоимость, массу или калорийность единицы i-го компонента, и q величин bk, указывающих минимально необходимое процентное содержание k-го вещества в смеси. Обозначим через x1, x2,.,xр значение компонента р-го вида, входящего в состав смеси.

Математическая модель этой задачи имеет такой вид:

(3.6)

при ограничении

(3.7)

Ограничение (3.7) означает, что процентное содержание k-го вещества в единице смеси должно быть не меньше bk.

К этой же модели принадлежит также задача определения оптимального рациона кормления скота.

4. Геометрический метод решение задач ЛП

Задача 1. При откорме каждое животное должно получить не менее 14 ед.питательного вещества S1, не менее 15 ед. вещества S2 и не менее 10 вещества S3. Для составления рациона используют два вида корма. Содержание количества единиц питательных веществ в 1 килограмме каждого вида корма и стоимость одного килограмма корма дана в таблице 1.

Таблица 1

Питательные вещества Количество единиц питательных веществ в 1 кг. корма
корм 1 корм 2
S1 1 2
S2 1 3
S3 2 1
Стоимость 1 кг. корма 3 7

Составить рацион минимальной стоимости.

Решение:

X1 + 2X2 ≥ 14

X1 + 3X2 ≥ 15

2X1 + X2 ≥ 10

X1, X2 ≥ 0

3X1 + 7 X2 → min

X1 + 2X2 = 14

X1 + 3X2 =15

2X1 + X2 = 10


5. Симплексный метод решения задач ЛП

Задача 2. Для изготовления 4-ёх видов продукции P1, P2, P3, P4 используют два вида сырья: S1 и S2. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а так же величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.

Таблица 2.

Вид сырья Запас сырья Количество единиц сырья, идущих на изготовление единицы продукции
P1 P2 P3 P4
S1 3 1 1 1 2
S2 7 1 2 3 1
Прибыль от единицы продукции 9 14 15 10

Составить план производства, обеспечивающий получений максимальной прибыли.

Решение:

1. Формальная постановка задачи имеет следующий вид:

9X1 + 14X2 + 15 X3 + 10X4 → max

X1 + X2 + X3 + 2X4 ≤ 3

X1 + 2X2 + 3X3 + X4 ≤ 7

X1, X2, X3, X4 ≥ 0

2. Приведем к стандартной (канонической) форме:

F = 9X1 + 14X2 +15X3 + 10X4 + 0X5 + 0X6

X1 + X2 + X3 + 2X4 + X5 = 3

X1 + 2X2 +3X3 + X4 + X6 = 7

X1, X2, X3, X4 ≥ 0

3. Запишем систему ограничений в векторной форме:

X1 (1/1) + X2 (1/2) + X3 (1/3) + X4 (2/1) + X5 (1/0) + X6 (0/1) = (3/7)

P1 P2 P3 P4 P5 P6 P0

P5, P6 - базисные

4. Запишем первоначальный опорный план: