Смекни!
smekni.com

Стандартна задача лінійного програмування (стр. 5 из 8)

5. Геометрична інтерпретація стандартної задачі

Геометрична інтерпретація аналітичних задач дає можливість наочно представити їх структуру, що сприяє засвоєнню їхніх основних властивостей та відкриває шляхи виявлення і дослідження інших, більш складних властивостей цих задач. У найпростіших випадках геометричне подання дає змогу знайти розв'язок задачі, однак навіть у тривимірному просторі геометричне розв'язування ускладнюється і створює ряд труднощів у побудові відповідних геометричних фігур, а в просторах вимірності, більшої за три, таке розв'язування і зовсім неможливе.

Можливі різноманітні форми і способи геометричного представлення задач лінійного програмування. Доцільність вибору кожного способу зумовлюється метою, якої хочуть досягти даною геометричною інтерпретацією та особливостями структури самої задачі, в тому числі й формою її представлення.

Для геометричної інтерпретації візьмемо основну задачу лінійного програмування у другій стандартній формі. Для наочності розглянемо найпростіший випадок, коли в системі обмежень (26) і цільовій функції (25) є лише дві змінних

,

Розглянемо розв'язування нерівностей.

Лема 3. Множина розв'язків нерівності з двома змінними

є однією з двох півплощин, на які вся площина ділиться прямою

, включаючи й цю пряму, а інша півплощина з тією ж прямою є множиною розв'язків нерівності

Доведення. Гранична пряма

перпендикулярна до вектора нормалі .
(рис 3.1). Вектор нормалі (його ще називають напрямним вектором ) є градієнтом лінійної функції
і показує напрям зростання її значень
— одиничні вектори вздовж осей
і
відповідно; таким чином,
. Справді, нехай
,
. Візьмемо на прямій, яка визначається вектором
точку
, причому нехай
, тобто точка
лежить далі від початку координат, ніж точка
. Очевидно також, що
. У точці
числове значення
лінійної функції
дорівнює
. Аналогічно в точці
значення
. Ураховуючи, що
, дістанемо

Рис. 1.


Аналогічно можна пересвідчитись, що напрям зменшення значень лінійної функції

збігається з напрямним вектором

Прямі лінії на площині

, які паралельні прямій, що визначається рівнянням
називають лініями рівнів лінійної функції
. Користуючись поняттям напрямного вектора
, можемо визначити розміщення півплощин
і
на координатній площині
. Півплощина
розміщена по той бік прямої
, куди показує напрямний вектор -
. Аналогічно вектор
показує, де розміщена півплощина
відносно прямої
побудуємо напрямний вектор N = (3,-2). Напрямний вектор міститься у шуканій півплощині, яка виділена штриховими лініями (рис 3.2).

Рис. 3.2

Якщо врахувати, що множина точок, що задовольняє рівняння

29.)

при п = 3, є півплощина, а при п > 3 - гіперплощина в n-вимірному просторі, то лему 3 можна поширити на випадок трьох і більше змінних.

Теорема 2. Множиною всіх розв'язків лінійної нерівності з п змінними


є одним з півпросторів, на які весь простір розділяється площиною або гіперплощиною (29), включаючи й саму площину (гіперплощину).

Розглянемо множину розв'язків систем нерівностей.

Теорема 3. Множиною розв'язків сумісної системи т лінійних нерівностей з двома змінними

є опуклим многокутником.

Доведення. Кожна з нерівностей у відповідності з лемою 3 визначає одну з півплощин, які є опуклими множинами точок. Множиною розв'язків сумісної системи лінійних нерівностей є множина точок, які належать півплощинам-розв'язкам усіх нерівностей, тобто належать їх перетину. Згідно теореми 2 про перетин опуклих множин ця множина є опуклою і містить скінчене число кутових точок, тобто є опуклим многокутником.

Теорема 4. Множина розв'язків сумісної системи т лінійних нерівностей з п змінними є опуклим многогранником в n-вимірному просторі.

Теорема 5. Множиною всіх допустимих розв'язків сумісної системи т лінійних рівнянь з п змінними (

) є опуклим многогранником в n-вимірному просторі.

Теорема 6. Оптимальне значення задачі лінійного програмування досягається у вершині многогранника розв'язків системи обмежень.

Результати цього підрозділу дають змогу так інтерпретувати задачі лінійного програмування:

У многограннику (многокутнику у випадку двох змінних) розв'язків системи обмежень задачі лінійного програмування знайти таку вершину, де цільова функція набуває оптимального (найбільшого або найменшого) значення.

Нехай фермер прийняв рішення вирощувати озиму пшеницю і цукрові буряки на площі 20 га, відвівши під цукрові буряки не менше як 5 га. Техніко-економічні показники вирощування цих культур маємо у табл. 2:

Таблиця 2 Показники вирощування сільськогосподарських культур

Показник (із розрахунку на 1 га) Озима пшениця Цукрові буряки Наявний ресурс
Затрати праці, людино-днів 5 25 270
Затрати праці механізаторів, людино-днів 2 8 80
Урожайність, тонн 3,5 40
Прибуток, тис. грн. 0,7 1

Критерієм оптимальності є максимізація прибутку.

Запишемо економіко-математичну модель структури виробництва озимої пшениці та цукрових буряків, ввівши такі позначення:

x1 — шукана площа посіву озимої пшениці, га;

x2— шукана площа посіву цукрових буряків, га.

Задача лінійного програмування має такий вигляд:

(38)

за умов:

(39)

(40)

(41)

(42)