Таким чином, модель економічного зростання у загальному вигляді складається із системи п’яти наведених рівнянь, які містять сім змінних (Y, K, L, C, I, , s), три із яких задаються екзогенно:
— затрати праці L (зростають із постійним темпом n);
— норма амортизації основного капіталу ;
— норма заощадження s (задається безпосередньо або ж у вигляді певних умов, наприклад, максимізація споживання).
Мета дослідників – з’ясувати питання про те, як змінюються ендогенні змінні в моделі економічного зростання (Y, C та І) і який із чинників є визначальним фактором довгострокового економічного зростання.
Це найпростіша модель економічного зростання, і була вона розроблена наприкінці 40‑х рр. Модель описує динаміку доходу (Y), який є сумою споживчих (С) та інвестиційних (І) витрат. Економіка вважається закритою, тому чистий експорт (NX) дорівнює нулю, а державні витрати (G) в моделі не вирізняються. Основним фактором зростання є нагромадження капіталу.
Основні передумови моделі:
– постійна продуктивність капіталу MPK = dY/dK;
– постійна норма заощадження s = I/Y;
– відсутній процес вибуття капіталу W = 0;
– інвестиційний лаг дорівнює нулеві, тобто інвестиції миттєво переходять у приріст капіталу. Формально це означає, що dK(t) = I(t);
– модель не враховує технічного прогресу;
— випуск не залежить від затрат праці, оскільки праця не є дефіцитним ресурсом;
— використовується виробнича функція Леонтьєва, яка передбачає неможливість взаємозаміни акторів виробництва – праці і капіталу.
Припускається, що швидкість доходу пропорційна інвестиціям: dY = MPK * I(t) = MPK * s * Y, а темп приросту доходу dY/Y * dt є постійним і дорівнює s * MPK. Він прямо пропорційний нормі заощаджень та граничній продуктивності капіталу. Інвестиції (І) та споживання (С) в моделі Харода-Домара зростають з таким же постійним темпом (s * MPK).
2. Рішення проводимо в пакеті MAPLE7, використовуючи функцію вирішення диференційного рівняння з початковими умовами Y (t=0)=Y0:
> L6:=diff (y(t), t)=(s/i*y(t) – A/i*t);
- ans1:= dsolve({L6, y(0)=Y0}, y(t));
Таким чином, розв’язком рівняння Харода-Домара у вигляді
з початковою умовою Y (t=0) =Y0; s, A, і – const;
є функція:
Завдання №2
Попит D та пропозиція S як функції змінної в часі ціни p=F(t) та її похідних задаються виразами
(2.2.0)Знайти стаціонарну ціну рівноваги попиту та пропозиції pD=S(t) – при умові D=S – вирівнювання попиту та пропозиції, як функцію часу, та з’ясувати чи вона є стійкою (оцінити рівень динаміки похідної
).Рішення:
1. Якщо попит D та пропозиція S є функціями ціни p(t) та її першої та другої похідних
, то їх рівняння в загальному вигляді можна представити наступним чином [1]: (2.2.1)2. В умовах пошуку точок рівноваги попиту та пропозиції:
(2.2.2)рівняння (2.2.1), віднімаючи перше від другого, перетворюємо у наступне рівняння
(2.2.3)яке має наступні початкові умови:
(2.2.4)Загальний розв’язок рівнянь (2.2.1) – (2.2.4) має вигляд [1]:
(2.2.5)де С1 та С2 – довільні сталі;
– корені характеристичного рівняння: (2.2.6)Після вирішення рівняння (2.2.6), отримані
– корені характеристичного рівняння в рівнянні (2.2.5) характеризують стаціонарність рівноважної ціни p(t) наступним чином:1) Якщо обидва корені
– є дійсними від’ємними або комплексними з від’ємною дійсною частиною, то рівняння (2.2.5) перетворюється до вигляду: (2.2.7)та з наростанням t рівноважна ціна p(t) буде прямувати до ціни рівноваги попиту D та S – PD=S, оскільки 1 та другий член рівняння (2.2.7) будуть наближатися до нуля.
2) Якщо обидва корені
– є дійсними позитивними, або один з них має позитивний знак, або комплексними з позитивною дійсною частиною, то згідно рівнянь (2.2.5), (2.2.7) з наростанням t рівноважна ціна p(t) буде віддалятися від до ціни рівноваги попиту D та S – PD=S, оскільки або перший, або другий член рівняння (2.2.5) будуть наближатися до .3. В точці рівноваги попиту та пропозиції D=S, рівняння (2.2.0) перетворюються в наступне диференційне рівняння другого порядку похідних:
(2.2.8)Для пошуку точок стаціонарної ціни рівноваги pD=S враховуємо умови дорівнювання нулю першої та другої похідної в цих точках:
(2.2.9)тоді рівняння (2.2.8) перетворюється до вигляду, який дозволяє розрахувати значення стаціонарної ціни рівноваги попиту та прозиції:
(2.2.10)Для рівняння (2.2.8) характеристичне рівняння має наступний вигляд:
(2.2.11)а корені його рішення, розраховані в пакеті MAPLE7, дорівнюють
> solve (L*L‑7*L‑30);
Оскільки корені характеристичного рівняння (2.2.11)
дійсні та мають різні знаки – рішення рівняння (2.2.10) є нестійким.Завдання №3
Знайти стаціонарні точки динамічної системи
(2.3.0)та дослідити їх стійкість в лінійному наближенні.
Рішення:
1. Положення рівноваги вихідної динамічної системи (стаціонарні точки динамічної системи) визначається наступними умовами:
(2.3.1)звідкіля маємо систему рівнянь рівноваги
(2.3.2)Рішення системи рівнянь рівноваги (2.3.2) в пакеті MAPLE7 дає наступні 4 пари коренів – стаціонарних точок рівноваги динамічної системи (2.3.0):
> eqp1:=-x*x+2*x-x*y=0;
> eqp2:=-y*y+6*y‑2*x*y=0;
>
> solve({eqp1, eqp2}, {x, y});
(2.3.3)2. Для дослідження стійкості кожного з отриманих рішень, складаємо системи першого наближення в околицях точок рівноваги за допомогою розкладення в ряд Тейлора. Формула Тейлора для функції двох змінних x, y у першому наближенні (тільки рівень 1 похідних) для функції
в околицях точки x0, y0 має наступний вигляд [7]: (2.3.4)Побудову систем рівнянь першого наближення системи (2.3.2) виконуємо за допомогою пакета MAPLE7 [4]:
> DxDt:=-x*x+2*x-x*y;
> mtaylor (DxDt, [x=0, y=0], 2);
> mtaylor (DxDt, [x=2, y=0], 2);
> mtaylor (DxDt, [x=4, y=-2], 2);
> mtaylor (DxDt, [x=0, y=6], 2);
(2.3.5)> DyDt:=-y*y+6*y‑2*x*y;
> mtaylor (DyDt, [x=0, y=0], 2);
> mtaylor (DyDt, [x=2, y=0], 2);
> mtaylor (DyDt, [x=4, y=-2], 2);
> mtaylor (DyDt, [x=0, y=6], 2);
>