Смекни!
smekni.com

Автоматизированный априорный анализ статистической совокупности в среде MS Excel (стр. 7 из 8)

Вывод:

Коэффициент регрессии а1 =1,0894 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на 1,0894 млн руб.

6.2 Экономическая интерпретация коэффициента эластичности

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности

, который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения

и
приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).

Расчет коэффициента эластичности:

=
=1,1667%

Вывод:

Значение коэффициента эластичности Кэ=1,1667% показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на 1,1667 %.

6.3 Экономическая интерпретация остаточных величин εi

Каждый их остатков

характеризует отклонение фактического значения yi от теоретического значения
, рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения
следует ожидать, когда фактор Х принимает значение xi.

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков

i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции
(которые в итоге уравновешиваются, т.е.
).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом

.

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 20, 19, 29 а максимальные отрицательные отклонения - три предприятия с номерами 7, 15, 32. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.

Задача 7

Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10

Регрессионные модели связи

Вид уравнения Уравнение регрессии Индекс детерминации R2
Полином 2-го порядка
5Е-05х2+0,6х+201,7
0,8353
Полином 3-го порядка
8Е-08х3-0,001х2+5,1х-5982,3
0,8381
Степенная функция
0,2х1,1788
0,8371

Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Вывод:

Максимальное значение индекса детерминации R2 =0,8381. Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид 8Е-08х3-0,001х2+5,1х-5982,3.


ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Таблица 2.1

Исходные данные

Номер предприятия

Среднегодовая стоимость основных производственных фондов, млн.руб.

Выпуск продукции, млн. руб.

5

2870,00

2240,00

23

3094,00

2976,00

27

3350,00

2560,00

1

3446,00

3296,00

8

3574,00

3520,00

32

3638,00

3712,00

22

3894,00

3168,00

19

3990,00

3040,00

2

4054,00

3616,00

3

4182,00

4032,00

13

4214,00

4288,00

26

4310,00

3936,00

9

4374,00

4128,00

4

4406,00

4480,00

28

4502,00

4000,00

17

4534,00

4096,00

6

4630,00

3840,00

14

4630,00

4672,00

25

4630,00

4160,00

7

4758,00

5184,00

31

4950,00

4160,00

18

5014,00

4864,00

10

5046,00

5152,00

20

5078,00

4160,00

24

5174,00

4768,00

29

5206,00

4384,00

15

5302,00

5664,00

12

5526,00

5440,00

21

5654,00

5600,00

16

6070,00

6080,00


Таблица 2.2
Зависимость выпуска продукции от среднегодовой стоимости основных фондов
Номер группы Группы предприятий по стоимости основеных фондов Число предприятий Выпуск продукции
Всего В среднем
на одно
предприятие
1 2870-3510 4 11072,00 2768,00
2 3510-4150 5 17056,00 3411,20
3 4150-4790 11 46816,00 4256,00
4 4790-5430 7 33152,00 4736,00
5 5430-6070 3 17120,00 5706,67
Итого 30 125216,00 4173,87
Таблица 2.3
Показатели внутригрупповой вариации
Номер группы Группы предприятий по стоимости основеных фондов Число предприятий Внутригрупповая дисперсия
1 2870-3510 4 161024,00
2 3510-4150 5 68239,36
3 4150-4790 11 138891,64
4 4790-5430 7 262729,14
5 5430-6070 3 73955,56
Итого 30
Таблица 2.4
Показатели дисперсии и эмпирического корреляционного отношения
Общая дисперсия Средняя из внутригрупповых дисперсия Межгрупповая дисперсия Эмпирическое корреляционное отношение
824093,5822 152469,0489 671624,5333 0,902765617

Выходные таблицы