Смекни!
smekni.com

Анализ модели на чувствительность (стр. 7 из 7)

Обозначим через

объем производства новой продукции. Поскольку в этой ситуации текущий базисный вектор
не изменился, можно для дальнейших использовать текущий вектор значений переменных двойственной задачи
. Вычисляем разность
.

Полученный результат показывает, что экономически целесообразно включить переменную

в оптимальное базисное решение. Для нахождения нового оптимального решения сначала вычисляем

.

Отсюда следует, что текущая симплекс-таблица должна быть приведена к следующему виду.

Базис

Решение

Теперь новое оптимальное решение можно найти путем введения в базис переменной и исключения из него переменной. Введение в модель ЛП нового вида деятельности, как видно из приведенной выше, можно рассматривать как обобщение ситуации, когда происходит изменение в векторе ресурсов, используемых для существующей деятельности. Поэтому изменение параметров существующего вида деятельности отдельно мы не рассматриваем.

Предположим, что фабрика игрушек TOYCO изменила конструкцию выпускаемых моделей, и теперь для их производства необходима четвертая сборочная операция. Ежедневный фонд рабочего времени этой операции составляет минут. Время выполнения этой операции при сборке одной игрушки различных видов составляет соответственно

,
и
минуту. В результате получаем новое ограничение:
. Это ограничение является избыточным, поскольку оно удовлетворяется при текущем оптимальном решении
,
и
. Таким образом, текущее оптимальное решение остается неизменным.

Заключение

В данной работе нашел свое отражение такой способ минимизации риска как анализ модели на чувствительность. На практическом примере работы игрушечной фабрики мы рассмотрели основные способы анализа чувствительности модели. Все они имеют свои преимущества и недостатки, которые должно оценивать лицо, принимающее решение о целесообразности применения того или иного метода в качестве минимизирующего риск. Также в данной работе рассмотрены основные сферы применения анализа модели на чувствительность, то есть – экономические (предпринимательские) риски.


Список использованной литературы

1. Bradley S., Hax A., Magnanti T. Applied Mathematical Programming, Addison-Wesley, Reading, Mass, 1977.

2. Bazaraa M., Jarvis J., Sheraii M. Linear Programming and Network Flows, 2nd ed., Wiley, New York, 1990.

3. Nering E., Tucker A. Linear Programming and Related Problems, Academic Press, Boston, 1992.

4. Ашманов С.А. Линейное программирование. — М.: Наука, 1981.

5. Гольдштейн Е.Г. Теория двойственности в математическом программировании и ее приложения. — М.: Наука, 1971.

6. Гольдштейн Е.Г., Юдин Д.Б. Линейное программирование: Теория, методы и приложения.— М.: Наука, 1969.

7. Моделирование рисковых ситуаций в экономике и бизнесе: Учеб. пособие /А.М. Дубров, Б.А. Лагоша, Е.Ю. Хрусталев, Т.П. Барановская; Под ред. БА. Лагоши. – 2-е изд., пере раб. и доп. – М.: Финансы и статистика, 2001.