Смекни!
smekni.com

Анализ различных методов оценки статистических показателей при типическом отборе (стр. 2 из 7)

Другими словами, расслоение можно рассматривать как процедуру извлечения выборок, в которой на обычный случайный отбор наложены некоторые ограничения или условия. При выполнении определенных условий и наложении правильных ограничений можно получить значительный выигрыш в надежности и, как правило, с малыми дополнительными затратами, либо вовсе без них. В другом, но близком смысле, расслоение - это способ включения знаний об общей совокупности и ее совокупностях по признакам в процедуру отбора таким образом, чтобы повысить ее эффективность [№2, стр. 170].

Типический отбор обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании семейных бюджетов рабочих и служащих в отдельных отраслях экономики, производительности труда рабочих предприятия, представленных отдельными группами по классификации.

Число отбираемых единиц из каждой типической группы зависит от ряда факторов, в том числе от способа отбора. Различают следующие виды выборки единиц из типических групп:

непропорциональная объему типических групп – общее число отбираемых единиц делится на число типических групп и полученная величина дает численность выборки из каждой типической группы:

,

где ni – численность выборки в i-той группе, n - численность выборки, l - число групп;

пропорциональная объему типических групп, формирующихся на неизменности соотношения объемов выборочной и генеральной совокупности:


,

где ni – численность выборки в i-той группе, Ni – численность в i-той группе, N - численность генеральной совокупности;

пропорциональная объему типических групп и вариации группировочного признака:

,

где ni – численность выборки в i-той группе, n - численность выборки,

- среднее квадратическое отклонение в i-той группе, Ni – численность в i-той группе.

2. Оценка параметров генеральной совокупности

2.1 Основные формы статистических показателей и виды их оценки

Статистические показатель – обобщающая количественная характеристика части или всей совокупности явлений в конкретных условиях места и времени. В теории несплошного наблюдения показатель выражается в следующих формах:

среднее значение признаков в совокупности;

суммарное значение признака по совокупности;

доля единиц в совокупности, обладающих определенным значением признака;

число единиц в совокупности, обладающих определенным значением признака;

отношения признаков в совокупности.

Для генеральной и выборочной совокупностей соответственно рассчитываются свои статистические показатели.

Среднее значение признака в совокупности находят по формулам:

для генеральной совокупности

,

где N - численность генеральной совокупности, xi – соответствующее значение признака;

для выборочной совокупности


,

где n – численность выборочной совокупности, xi – соответствующее значение признака;

суммарное значение признака в совокупности находят по формулам:

для генеральной совокупности

,

где xi – соответствующее значение признака;

для выборочной совокупности

,

где n – численность выборочной совокупности; xi – соответствующее значение признака;

долю единиц в совокупности, обладающих определенным значением признака находят по формулам:

для генеральной совокупности

,

где A - число единиц, обладающих определенным значением признака, N - численность генеральной совокупности;

для выборочной совокупности

,

где a - число единиц, обладающих определенным значением признака, n – численность выборочной совокупности;

число единиц, обладающих определенным значением признака, находят по формулам:

для генеральной совокупности

,

где P – доля единиц в совокупности, обладающих определенным значением признака, N – численность генеральной совокупности;

для выборочной совокупности

,

- доля единиц в совокупности, обладающих определенным значением признака, n – численность выборочной совокупности;

отношения признаков в совокупности (отношение двух средних или суммарных значений признаков) находят по формулам:

для генеральной совокупности

,

где

- среднее значение признака
в генеральной совокупности;

для выборочной совокупности

,

где

- среднее значение признака
в выборочной совокупности.

Существует два вида оценок форм статистических показателей: простая и сложная. Сложная оценка - оценка по отношению, по регрессии, по разности, по произведению, по скорректированным весам. Сложные оценки, возможно, производить при наличии дополнительной информации о признаке в генеральной совокупности. Но в большинстве исследований подобной информации нет, поэтому чаще используется простая оценка генеральных параметров.

Оценка - приближенное значение неизвестного параметра генеральной совокупности, полученное на основании результатов выборочного наблюдения.

2.2 Точечная и интервальная оценка генеральных параметров

Оценки являются случайными величинами и бывают двух видов:

точечная - оценка параметра в генеральной совокупности одним числом;

интервальная - предполагает построение числового интервала, относительно которого с заданной вероятностью можно утверждать, что внутри него находится оцениваемый параметр генеральной совокупности. Интервальная оценка предполагает расчет нижней и верхней границы интервала. Между точечной и интервальной оценками существует взаимосвязь, которую можно представить следующим образом:

Верхняя (нижняя) граница интервала = точечная оценка

ошибка доверительного интервала (ошибка репрезентативности).

Ошибка репрезентативности присуще только выборочному наблюдению и возникает в силу того, что выборочная совокупность не полностью воспроизводит генеральную совокупность. Она представляет собой расхождение между значениями показателей, полученных по выборке, и значениями показателей этих же величин, которые были бы получены при проведенном с одинаковой степенью точности сплошном наблюдении, т.е. между величинами выборных и соответствующих генеральных показателей. Для каждого конкретного выборочного наблюдения значение ошибки репрезентативности может быть определено по соответствующим формулам, которые зависят от вида, метода и способа формирования выборочной совокупности [№7, стр. 88].

Ошибки репрезентативности бывают двух видов: предельная (

) и средняя (
) и соответственно

,

где t - коэффициент доверия, который зависит от уровня вероятности, с которым результаты выборки распределяются на генеральную совокупность; t определяется по таблице вероятностей Лапласа:

при значении t равном 1, вероятность равна 0,682;

при значении t равном 2, вероятность равна 0,954;

при значении t равном 3, вероятность равна 0,997;

при значении t равном 4, вероятность равна 0,999.

При типическом отборе аналитическое выравнивание точечных и интервальных оценок генеральных параметров обусловлено механизмом отбора. При типическом отборе предполагается деление генеральной совокупности на группы и эти группы должны быть однородны с точки зрения вариации значения группировочного признака. Ну а далее из типов отбор осуществляется либо собственно-случайным способом, либо механическим. Собственно-случайный применяется, когда единицы генеральной совокупности располагаются в случайном порядке. Всем единицам генеральной совокупности присваивается порядковый номер, затем осуществляется отбор единиц в выборочную совокупность следующими способами:

по жребию;

по таблице случайных чисел;

через генерацию случайных чисел в MS Excel.

Механический отбор применяется, когда единицы в генеральной совокупности упорядочены. Суть механического отбора состоит в том, что единицам генеральной совокупности присваиваются порядковый номер, затем генеральная совокупность делится на число групп равных численности и из каждой группы берется один представитель.